室温时电阻率约在10E-5~E欧姆·米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴(图1 )。导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生半导体
而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。
小注入是指注入的非平衡载流子浓度远小于平衡时的多数载流子浓度,比如n型半导体,如果满足△n和△p远小于平衡电子浓度(n0)就属于小注入。 p型就是远小于平衡空穴浓度(p0)。半导体物理简介:
是固体物理学的一个分支。典型的半导体主要是由共价键结合的晶体,如硅、锗。研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。研究半导体中的电子状态是以固体电子论和能带理论为基础,主要研究半导体的电子状态,半导体的光电和热电效应、半导体的表面结构和性质、半导体与金属或不同类型半导体接触时界面的性质和所发生的过程、各种半导体器件的作用机理和制造工艺等。
半导体物理学的发展不仅使人们对半导体有了深入的了解,而且由此而产生的各种半导体器件、集成电路和半导体激光器等已得到广泛的应用。
又称基区宽度调制效应,属于半导体物理的范畴,就是指基区的有效宽度随集电结的反偏电压的变化而变化的效应。当集电结反向电压增大时,集电结的空间电荷区加宽,这就引起基区有效宽度变窄。
电导调制效应是Webster效应,是在大注入时基区电导增大的现象;而基区宽度调制效应就是Early效应,是集电结电压变化而致使基区宽度变化、并造成伏安输出特性倾斜、使输出电阻减小的现象;另外,基区宽度展宽效应就是Kirk效应,是在大电流下基区宽度增大的现象。
影响
Webster效应的直接影响就是BJT基区的电阻率下降(电导率增大),使得发射结的注射效率降低,减小了电流放大系数。
对于基区掺杂浓度分布均匀的晶体管(例如合金晶体管)而言,引起其在大电流下电流放大系数b下降的主要原因就是Webster效应。不过,对于Si平面晶体管,由于基区掺杂浓度较高一些,所以Webster效应的影响往往较小(这时,引起大电流时b下降的主要原因是Kirk效应)。
总之,BJT在大电流(大注入)工作时,往往容易出现发射极电流集边效应、Kirk效应和Webster效应。虽然这些现象,对于BJT工作而言都属于二级效应,但是在设计较大功率的器件(特别是高频大功率晶体管)时,却是必须要考虑和解决的一些重要问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)