功率半导体产业持续增长趋势明确,替代空间巨大?eimkt

功率半导体产业持续增长趋势明确,替代空间巨大?eimkt,第1张

功率半导体器件又称电力电子器件,主要用于电力设备的电能变换和电路控制,是进行电能(功率)处理的核心器件,弱电控制与强电运行间的桥梁。功率半导体有两大作用,一是电源开关,二是电源转换。

电源开关的原理是用小电流控制大电流,小电流部分PMIC和DriverIC为功率IC,而大电流部分开关为MOSFET、IGBT等功率分立器件或模块。

电源转换是指充电用电过程中交流电、直流电的相互转换。在小功率设备中,比如智能手机中的升压器、降压器、稳压器可集成在PMIC中,或做成单独功率IC;而在大功率设备中,比如电动汽车中的整流器、逆变器等一般则是由功率分立器件组成的功率模块。

功率半导体产品形态多种多样,几乎所有与电力能源相关的产品都需要用到功率半导体器件。一般来说,功率半导体可分为分立器件和功率IC,功率IC相当于SOC,功率模块相当于SIP。

全球功率半导体行业现状

近年,来由于工业控制、家电产品、充电设备等终端应用不断追求更高能源效率,功率器件下游产品范围的稳步扩张、产量的大幅增长以及功率器件技术的快速更新,功率器件市场在全球范围尤其是中国地区都保持稳步增长。

据Yole数据显示,2017年,全球功率半导体市场规模超300亿美元,其中功率分立器件和模块市场规模约为150亿美元,功率IC约为200亿美元。预计功率分立器件2016-2021复合年增长率为3.1%,功率IC2016-2021复合年增长率为3.4%,功率模块2016-2021复合年增长率为7.0%。

具体产品来看,2017年,全球功率分立器件和模块市场规模约为150亿美元,其中二极管约占20%,MOSFET约占40%,IGBT及功率模块约占30%。

应用方面,功率半导体的应用范围已从传统的工业控制和4C产业(计算机、通信、消费类电子产品和汽车),扩展到新能源、轨道交通、智能电网等新领域。HIS数据显示,2017年,全球功率半导体市场中工业应用市场占比为34%,汽车应用市场占比23%,消费电子应用占比为20%,无线通讯应用占比为23%。

竞争格局方面,功率分立器件(模块)市场竞争格局总体上较为分散,英飞凌为全球龙头,2016年市场份额达到18.5%;其他企业市场份额均在10%以下。

—— 更多数据参考前瞻产业研究院发布的《2018-2023年中国半导体分立器件制造行业发展前景与投资预测分析报告》。

半导体是一种电导率在绝缘体至导体之间的物质,其电导率容易受控制,可作为信息处理的元件材料。从科技或是经济发展的角度来看,半导体非常重要。很多电子产品,如计算机、移动电话、数字录音机的核心单元都是利用半导体的电导率变化来处理信息。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

基本简介

半导体

顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor)。

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,单还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

基本定义

电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。

半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。

半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

半导体(东北方言):意指半导体收音机,因收音机中的晶体管由半导体材料制成而得名。

本征半导体

不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

分立功率器件按照功率的大小划分为大功率半导体器件和中小功率半导体器件。具体来说,大功率晶闸管专指承受电流值在200A 以上的晶闸管产品;大功率模块则指承受电流25A 以上的模块产品;大功率IGBT、MOSFET 指电流超过50A 以上的IGBT、MOSFET 产品。

1956 年美国贝尔实验室(Bell Lab)发明了晶闸管,国际上,70 年代各种类型的晶闸管有了很大发展,80 年代开始加快发展大功率模块,同时各种大功率半导体器件在欧美日有很大的发展,90 年代IGBT 等全控型器件研制成功并开始得到应用。

在国内,60 年代晶闸管研究开始起步,70 年代研制出大功率的晶闸管,80年代以来,大功率晶闸管在中国得到很大发展,同时开始研制模块;本世纪以来,开始少量引进超大功率晶闸管(含光控晶闸管)技术;近年来国家正在逐步引进IGBT、MOSFET 技术。中国宏观经济的不断成长,带动了大功率半导体器件技术的发展和应用的不断深入。

晶闸管、模块、IGBT 的发明和发展顺应了电力电子技术发展的不同需要,是功率半导体发展历程中不同时段的重要标志产品,他们的应用领域、应用场合大部分不相同,小部分有交叉。在技术不断发展和工艺逐步改善的双重推动下,[1]大功率半导体器件将向着高电压、大电流、高频化、模块化、智能化的方向发展。在10Khz 以下、大功率、高电压的场合,大功率晶闸管和模块具有很强的抗冲击能力及高可靠性而占据优势,同时又因成本较低、应用简单而易于普及。在10Khz 以上、中低功率场合,IGBT、MOSFET 以其全控性、适用频率高而占据优势。

IGBT的工作原理是是通过加正栅电压形成沟道,作用是为PNP晶体管提供基极电流,使IGBT导通。

IGBT是绝缘栅双极型晶体管,是由双极型三极管和绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件。兼有金氧半场效晶体管的高输入阻抗和电力晶体管的低导通压降两方面的优点,GTR饱和压降低,载流密度大,但驱动电流较大。

MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低,非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

工作特性:

1、静态特性

IGBT的静态特性主要有伏安特性、转移特性,IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似,也可分为饱和区1、放大区2和击穿特性3部分。

2、动态特性

动态特性又称开关特性,IGBT的开关特性分为两大部分,一是开关速度,主要指标是开关过程中各部分时间,另一个是开关过程中的损耗。IGBT的开关特性是指漏极电流与漏源电压之间的关系,IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。

以上内容参考:百度百科—IGBT


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9199139.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存