以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。
目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。
石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42×10-10米,键与键之间的夹角为120°。除以σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。石墨烯是目前已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大0.25TPa。[5] 由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。
1、化学制备的石墨烯都有一定的拓扑或性能缺陷,难以用于石墨烯CPU或者电子学材料。氧化-还原法的缺点是制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制,
气相沉积法所得的石墨烯相对机械剥离法制备的石墨烯难以转移;一些使用气相沉积法所得石墨烯中没发现量子霍尔效应,说明气相沉积法可能会影响石墨烯的某些特性,
而完全无缺陷的石墨烯我们叫它原始石墨烯,由于其二维性质,电荷分数化(低维物质的单独准粒子的表观电荷小于单位量子)会发生于石墨烯。因此,原始石墨烯是制造量子计算机所需要的任意子元件的合适材料。
高定向热裂解石墨、鳞片石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学,包括今后制作CPU,提供了一种思路,缺点是产率低。
2、石墨烯CPU可能的工艺路线图:
a、单电子晶体管(SET)方向
SET是利用Coulomb阻塞效应来工作的一种量子器件。SET具有功耗低、灵敏度高和集成容量大等突出的优点, 现在被认为是传统的微电子MOS器件之后最有发展前途的新型纳米器件之一,相关工艺很可能成为纳米电子学,也可能是高集成度石墨烯CPU的核心工艺。但目前受微细加工技术水平和寄生电容的限制;难控制的残留电荷使得SET的集成化比较困难。
最近利用电子束光刻与干刻蚀的方法已经将同一片石墨烯加工成量子点、引线和栅极,获得了室温下可以 *** 作的石墨烯基单电子场效应管,解决了目前单电子场效应由于纳米尺度材料的不稳定性所带来的 *** 作温度受限问题,至少暗示可以借用现在的MOS工艺稍加改造制作石墨烯SET。
b、双层石墨烯场效应管(FET)方向
在两层石墨烯之间加电压打破对称性,可以在几百meV的范围调节带隙。使之可以用于未来的微处理器。用这种方法几乎可以借用现在的MOS工艺稍加改造制作石墨烯CPU,换种说法:使用双层石墨烯的FET有可能获得高的导通/截止比。例如有人将栅长缩小至20~15nm,在导通电流、导通/截止比及S因子等特性方面,可获得与最尖端的Si-MOSFET匹敌的性能。比如,导通/截止比可改善至104左右,S因子可改善至110mV/dec,导通电流超过英特尔的32nm工艺的逻辑LSI用MOSFET。
C、利用石墨烯纳米带的量子限制
通过尺寸效应或量子受限(如在石墨烯纳米带) 引入能隙。对于手性纳米带,导带与价带间的带隙随着手性角的变化发生振荡,对于某些类型的石墨烯纳米带,通过调节纳米带宽实现对带隙宽度的调节(能隙与纳米带宽之间存在反比关系)。基于以上带隙调制原理石墨烯场效应晶体管。通过在双层石墨烯纳米线中引入几何形状(比如弯管和边角等),可以有效地切断电流,将石墨烯设置成二维的蜂巢结构,通过一个独特的管道结构,制作石墨烯场效应晶体管(GFETs)可将开关频率提高了1000多倍,将几何形状引入石墨烯管道内是一个新想法,该方法在让GFETs保持结构简单的同时获得卓越的性能,借此可以超越目前已有的CMOS技术,研发出更加高级的晶体管因此,可以很容易实现商业化生产。
后两条路线更容易使用常规加工技术, 甚至可能在一片石墨烯上直接加工出各种半导体器件和互连线, 制作全碳集成电路。
3、CPU级石墨烯大致的要求:
微电子应用或者CPU要求半金属石墨烯不仅具有高载流子浓度和载流子迁移率,亚微米尺度的d道输运特性和电场调制载流子特性;可以在室温下稳定存在,室温下高的载流子迁移率(普通硅片的十倍);室温亚微米尺度的d道传输特性也是石墨烯作为纳米电子器件最突出的优势,使对高速CPU极具吸引力的室温d道场效应管成为可能;较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的 *** 作响应特性是石墨烯基CPU的另一显著优势。用石墨烯器件制成CPU的运行速度可达到1T(1012) Hz,比现在常见的1G(109) Hz的计算机快1000倍。此外,CPU级石墨烯的电子迁移率和空穴迁移率两者几乎相等,事其N型场效应晶体管和P型场效应晶体管是对称的,CPU级石墨烯还具有零禁带特性,即使在室温下载流子在石墨烯中的平均自由程和相干长度也可为微米级,为一种性能非常优异的半导体材料。
CPU级石墨烯还要求极低的1/f噪声。纳米器件随着尺寸的减小,被称做1/f的噪音会越来越明显,使器件信噪比恶化,这种现象称为“豪格规则( Hooge's Law)”。如何减小1/f噪声也是实现石墨烯CPU的关键问题之一。不过这主要和加工有关。
更专业的问题和解决方案可以咨询元石石墨烯。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)