数模转换时怎么进行的

数模转换时怎么进行的,第1张

数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC(Digital Analog Converter)。我们知道数分可为有权数和无权数,所谓有权数就是其每一位的数码有一个系数,如十进制数的45中的4表示为4×10,而5为 5×1,即4的系数为10,而5的系数为1, 数模转换从某种意义上讲就是把二进制的数转换为十进制的数。 最原始的DAC电路由以下几部分构成:参考电压源、求和运算放大器、权产生电路网络、寄存器和时钟基准产生电路,寄存器的作用是将输入的数字信号寄存在其输出端,当其进行转换时输入的电压变化不会引其输出的不稳定。 时钟基准产生电路主要对应参考电压源,它保证输入数字信号的相位特性在转换过程中不会混乱,时钟基准的抖晃(jitter)会制造高频噪音。二进制数据其权系数的产生,依靠的是电阻,CD格式是16bit,即16位。所以采用16只电阻,对应16位中的每一位。参考电压源依次经过每个电阻的电流和输入数据每位的电流进行加权求和即可得出模拟信号。这就是多比特DAC。 多比特与1比特的区别之处就是,多比特是通过内部精密的电阻网络进行电位比较,并最终转换为模拟信号,好处在于高的动态跟随能力和高的动态范围,但是电阻的精度决定了多比特转换器的精度,要达到24bits的转换精度,对电阻的要求高达0.000015,即便是理想的电阻,其热噪音形成的阻值波动都会大于此值,多比特系统目前广泛采用的是R-2R梯形电阻网络,对电阻的精度要求可以降低,但即便如此,理想状态的电阻达到的转换精度也不会达到 24bits,23bits已经是极限多比特系统的优点在于设计简单,但受制于电阻的精度,成本也高单比特的原理:依靠数学运算的方法在CD的脉冲代码信号(PCM)中插入过取样点,插入7个取样点就是18倍过取样,这些插入的取样点与原信号通过积分电路进行比较,数值大的就定为1,数值小的就定为0,原先的PCM信号就变成了只有1和0的数据流,1代表数据流较密集,0代表数据流较稀疏,这就是脉冲密度调制信号(PDM),脉冲密度调制信号经过一个开关电容网络构成的低通滤波器,1 就转换为高电压信号,0就转换为低电压信号,然后通过级联积分,最终转换为模拟信号。插入取样信号会制造出许多高频噪音,所以还要经过一个噪音整形电路处理,将这些噪音推移到人耳听不到的频域。 1bit的优点在于转换精度不受制于电阻,转换精度可以超过24bits,成本也低,但是设计过取样和噪音整形的电路难度很大。因为电阻在精密程度(光刻)和热噪音(材料)上对音质影响相对小些,而1比特的电容和积分电路对音质影响则相对大些对于CD的数据格式,单从声音素质上应该说多比特优于1比特,多比特对16比特的CD信号直接进行转换,而单比特还要经过一个PCM信号转换为PDM信号的程序,还要经过开关电容的充放电过程,虽然从理论上来说,最终得到模拟信号的速度和多比特相比不会慢到可以比较的程度,但是实际听感上,单比特不如多比特听起来更有活力,单比特似乎要慢一点,中频厚一点,音色比较浓郁。 1bit始创于飞利浦,分为三派,一派是以飞利浦为代表的比特流Bitsream,一派是以松下为代表的MASH,但是MASH的创始者是NTT公司,还有一派就是今天非常流行的Delta-Sigma.Bitsream采用最传统的 三阶或四阶噪音整形,MASH (Multi Stage Noise Shaping)就是多级噪音整形,它将最初的量化值与原信号的误差保留下来,下一次量化时先将上次量化值与误差从原信号中减去,这样重复数次,可以将二进制信号变换为脉冲宽度调制(PWM)的信号(PWM和PDM几乎一样)还可以将量化制造的噪音推到甚高频段,从而减少可闻频段的噪音。但是似乎只有松下公司大量采用这种技术。现在MASH已经很少见了,但从理论上来说它是很优秀的。 1987年,飞利浦公司首次推出采用数字比特流技术(Bitsream)的单比特DAC芯片,它为高性能低价格CD唱机的出现奠定了坚实的基础。1991年9月推出的DAC-7将比特流技术发挥到淋漓尽致的地步,同时还保持了合理的价格。音响史上有众多采用DAC-7的名机。如飞利浦的LHH-900R,800R,300R,951。马兰士的CD-72,CD-17,CD-23。麦景图的MCD- 7007。先锋的早年旗舰PD-T07。meridian的602/603,还有几乎所有欧洲数字音源厂家如 Rotel,Altis,Deltec,Revox,Studer等都在其旗舰系统中采用DAC-7。进入21世纪之后,TDA1547依然锋芒未减,目前世界上最高级的SACD唱机——马兰士的SA-1仍然采用DAC-7,令世人不得不对DAC-7再次侧目。迄今为止,DAC-7仍然是飞利浦最高级的比特流DAC芯片。在飞利浦的产品手册里,是这样评价DAC-7的;拥有顶级性能的双声道数字比特流DAC芯片,1Bit数字模拟转换器专用,使用DAC-7可以轻而一举获得高保真的数字音频再生。DAC-7非常适合用于要求高质量的CD和DAT播放器,或者用于数字放大器和数字信号处理系统之中。这样的评价非常中肯。 DAC-7包括TDA1547和SAA7350 ,因为过取样和噪音整形电路制造出的大量高频数字信号会对TDA1547中的模拟电路造成干扰和调制。所以将配合TDA1547的三阶噪音整形和24倍过取样电路单独设计于SAA7350之中。这也是TDA1547成功的最关键之处。现在飞利浦又对SAA7350加以全面改进,将数字滤波器也集成进来,新型号定为TDA1307,仍然是专门配合TDA1547的芯片。不过TDA1547和TDA1307合起来叫DF7。 TDA1547采用了双极组合型金属氧化物半导体工艺。在数字逻辑电路方面,采用最佳的时钟频率,可以减少数字噪音的产生。在模拟电路方面采用双极型晶体管,可以使运算放大器获得较高的性能。在电源供应方面,TDA1547费尽心机,首先是模拟电路与数字电路分开供电,在数字电路里面,高电平逻辑电路与低电平逻辑电路分开供电,并且都是左右声道独立供电。内部总体结构方面,TDA1547采用双单声道设计,彻底分离,输出也是左右声道独立输出。 TDA1307可以接收16、18、20bits格式的信号,输出音频格式32bits。内置接收界面,去加重滤波器,采用8倍过取样有限脉冲响应(FIR)滤波器,3阶或4阶可选型噪音整形电路。标准型芯片信噪比达致当今最高的142dB,动态范围高达137dB。 马兰士的SA-1将DAC-7最完美的运用,它采用四片TDA1547和TDA1307构成全平衡电路。模拟放大部分采用马兰士高级机型里大量使用的HDMA。今天Delta-sigma 1bit非常流行,它包括两部分电路,一部分是Delta电路,它将量化后的信号与初始信号进行比较求差,这些插值信号接下来进入Sigma电路,此电路将这些插值信号进行误差求和,然后与量化前的信号相迭加。然后再进行量化。通常采用飞利浦开发的动态元素配对(DEM)量化技术,此种量化包含一个极高精度的电流源和多个1/2镜像电流源,由于集成电路最擅长镜像电流源电路,所以对元器件精度的要求可以降低,提高了性价比。量化以后的信号通过开关电容网络转换为模拟信号。需要指出并非所有的Delta- sigma 转换都是单比特。Delta-sigma的优势在于它的高性价比,从而在中低档数字音源市场上非常流行。即便是那些坚持采用多比特的厂家,中低价位也得采用Delta-sigma。 坚持使用Delta-sigma的恐怕非Crystal莫属,CRYSTAL的cs4390,4396在业界也有大量使用,其中也不乏极品如mbl1611hr,还有发烧天书A级的Meridian 506.20 、 Meridian 508.24、 Meridian 506.24还有国内新德克的 DAC-1 。CS4390于1998年6月发售,是CRYSTAL第一块Delta-sigma DAC芯片。它是一块完整的立体声DAC解码芯片,信号先进入128倍内插值电路,然后经过128倍过取样Delta-sigma数模变化,接着输出模拟信号和经过调制的基准电压, 最后进入一个超级线性的模拟低通滤波器。其中Delta-sigma数模变换部分还没有采用飞利浦的DEM技术。CS4390的信噪比为115dB,动态范围是106dB,总谐波失真加噪音为—98dB,转换精度为24bits,对时基抖晃敏感程度较低。其后又在CS4390的基础上增加了音量控制,改名为CS4391。一年以后的1999年7月,CRYSTAL推出CS4390的升级产品——CS4396,CS4396与CS4390最大区别之处就是采用了DEM技术,CS4396也是一块完整的立体声DAC芯片,信号在经过内插值和Delta-sigma变换后,进入DEM程序块,然后通过开关电容网络,最后通过模拟低通滤波器,输出级采用了高音质的差分电路。DEM的采用使CS4396的失真和噪音都有所降低,达到了—100dB,动态范围也提高到120dB,转换精度还是24bits,最高取样频率升至192KHz,但是不在提供信噪比的参数。同时推出的CS4397是在CS4396的基础上支持外接PCM(对应DVD-AUDIO)和DSD(对应SACD)内插式滤波器。半年多以后,CRYSTAL公司又推出CS4396的升级产品——CS43122,与CS4396不同之处一个是采用了第二代的DEM技术,另一个是 Delta-sigma调制器不再采用1bit而采用了5bits三阶调制。对于内插值电路也加以改进,达到了102dB的阻带衰减性能。CS43122与CS4396的性能参数基本一样,只有动态范围达到了122dB,这也是目前动态范围最高的DAC芯片。2000年9月20日,CRYSTAL公司又推出CS4392,一款对应 DVD-AUDIO和SACD的DAC芯片,动态范围有114dB,总谐波失真加噪音为—100dB,但是只OEM,暂不流通销售,每片售价仅2.8美元。(注意CRYSTAL从头到尾都不在提信噪比,因为它的信噪比只有CS4390 达到了115dB) 日本的NPC公司同样以Sigma-Delta变换技术闻名于世,我们对NPC的高性能数字滤波器一定很熟,最出名的SM5842,乃是公认的极品。同样 SM5865则是Sigma-Delta 极品解码芯片,虽然不为人知,但是在不久的将来,SM5865也会被公认为极品。 SM5865是今年2月份推出的,首先它是单声道芯片,内部是真真正正的全平衡电路,信号先经过插值电路,然后进入三阶多比特Sigma-Delta变换程序,接着经过31级DEM量化,最后经过开关电容网络变为模拟信号,SM5865的DEM量化级数极高且非常成功,从而使得量化导致的可闻频域噪音可以完全忽略,所以最后一级的模拟低通滤波可以省掉,从而得到理想状态的失真程度和噪音量。SM5865是目前世界上失真最低噪音最小的DAC芯片,总谐波失真加噪音只有0.0003%,即— 110.5dB。同时仍然做到了120dB的信噪比和117dB的动态范围,接受数据格式在20-24bits之间,最高取样频率也是192KHz,从而顺利登上今日DAC之王的宝座。多比特DAC分为两大名家,一是UltraAnalog公司,另一个就是Burr-Brown公司。大多数人对UltraAnalog可能会比较陌生,因为它在1998年12月被Wadia收购了,从此再也没有它的消息。但是它在DAC历史上的地位远非Burr-Brown可比,使用 UltraAnalogDAC芯片有汇点(Conterpoint)的旗舰解码器 DA-10,宝丽音Parasound的旗舰解码器 D/Ac-2000,Mark Levinson的早年旗舰解码器 NO.30和 N0.30.5 还有日本静电耳机名厂Stax的起见解码器 DAC-x1,KinergetICs 的高级解码器 kcd-55 而Manleylab、 Sonic Forntiers、Camelot、Entech、Aragon、Audio Synthesis 的旗舰解码器都采用UltraAnalog的芯片。基本上采用UltraAnalog芯片的解码器都会是发烧天书的A级品。并且几乎1998年以前所有的美国顶级解码器都采用的是UltraAnalog的芯片。虽然UltraAnalog的产品很好但是利润低,因为UltraAnalog只有这一种产品,对集成电路生产厂家来说这样根本无法维持下去,UltraAnalog 可以活到1998年就已经不错了,Wadia将其收购以后,没有将UltraAnalog的技术资源吸收并转化。同时Wadia也认为 UltraAnalog是个包袱,渐渐地UltraAnalog香消玉陨了,今天仍有UltraAnalog的死终派如 Manleylab、 Sonic Forntiers、Camelot、Entech、Aragon、Audio Synthesis仍坚持采用UltraAnalog的芯片,可能库存还不少,Sonic Forntiers 还和UltraAnalog有合作关系。可能也生产UltraAnalog的芯片。UltraAnalog公司是世界上第一家对时基抖晃加以仔细研究的厂家,同时UltraAnalog的产品时基抖晃也是世界最低,UltraAnalog还提出一种可以大幅减少时基抖晃的数字音频信号接口界面。1993年 UltraAnalog还发明了非常廉价的时基抖晃分析仪。 UltraAnalog的芯片主要是D20040,我们对其知之甚少,只知道是20bits的转换精度,内部是两个19bits的DAC并联而成。其他就不知道了。相信再过10年,还有谁知道UltraAnalog?技术和商业绝对不是一会事。 Burr-Brown在今天的DAC芯片市场上份额甚大,声誉颇隆。Burr-Brown成立于1993年,和UltraAnalog一样是多比特的死终派,建厂伊始推出PCM58,PCM63,也是好评如潮,但仍无法与UltraAnalog匹敌。1995年推出PCM1702终于可以于 UltraAnalog一争高下,直到今天采用PCM1702的高级CD机也不在少数,Linn在2000推出的Sondek CD机采用PCM1702售价高达20000美元,发烧天书评为A级。这之后沉寂4年,1999年2月,推出多比特DAC的终极产品PCM1704。此时UltraAnalog已经被Wadia收购,渐渐式微。Burr- Brown也被TI(德州仪器)公司收购,依托TI的强大实力,Burr-Brown得到了良好的发展,成为今日DAC芯片市场上的龙头老大。 PCM1702推出于1995年6月,当时市场上1bit声誉甚隆,Burr-Brown对1bit提出挑战,Burr-Brown指出1bit插入取样点的做法会导致许多高频噪音的产生虽然这些噪音的频率比较高,但是仍有可能对可闻频域造成调制,并且这些人为制造的噪音还需要噪音滤波器来消除,滤波器的加入对信噪比的衰减较大,低电平时响应也不够好而Burr-Brown认为信噪比这个特性几乎是最重要的特性。多比特的唯一缺点就是过零失真,PCM1702采用了信号数值型(sign magnitude)结构完美解决了这一问题,在1702内部互补并联了一对DAC,并联的好处一是提高了信噪比,二是提高了转换精度,1702内部并联了两个19bits的DAC,转换精度就是20bits。这两个DAC共用一个参考电压,共用一个R-2R梯形电阻网络,梯形电阻网络的位电流源由双平衡电流级供应,确保位电流源具备完美的跟踪特性。每个DAC内部都采用激光微调的钼铬电阻,确保高精度,两个DAC经过精确微调确保相位一致。最终两个 DAC的正负半周转换完美解决了过零失真。而传统的R-2R形电阻数模转换则取得了高信噪比和低失真,还有近乎理想的低电平表现和高电流输出能力。 PCM1702的信噪比为120dB,这个数值直到现在也没有谁能打破,在当时更使人难以想象。1702的总谐波失真加噪音为—96dB,在当时也是非常好的特性。 PCM1704推出于1999年2月,是多比特DAC的终极产品,恐怕再也不会有多比特DAC超过它,Burr-Brown用它最擅长的电阻制造工艺制造出了达致理想精度的电阻,从而得到了世界上最高精度的多比特DAC,高达23bits。两个并联之后达到24bits。至于内部结构与PCM1702基本上没有差别。1704的信噪比还是120dB,动态范围112dB(K级),总谐波失真加噪音为-101dB(K级)。至1704后到现在,Burr-Brown再也没有推出比1704更高等级的多比特DAC,Burr-Brown也无法打破自己创造的记录,2001年4 月30日,Burr-Brown推出新一代的顶级DAC—PCM1738,采用了先进层次结构型DAC,Burr-Brown也知道传统的多比特走到了尽头。先进层次型结构先用一个24bits,八倍取样频率下工作的数字内插值滤波器对数字信号进行分流,分为上6bits信号,下18bits信号。上6bits信号进行反向互补位移型二进制译码,转换为62级数字信号,下18bits信号则进行三阶15级Delta-sigma调制,调制频率是取样频率的64倍,最终转换为4级数字信号,然后两者相加为66级数字信号,再加上1级LSB信号,总共67级数字信号,这67级数字信号然后通过数据加权平均(DWA)程序,以减少模拟元件不配对引起的噪音,实际上DWA就是第二代的DEM。经过DWA处理后,最后进入电流型数模转换器,将二进制脉冲信号变为脉冲电流信号,再由芯片外的运算放大器进行电流电压转换,并最终取得模拟信号。应该说这种DAC不是单比特也不是多比特,应该叫它电流脉冲型DAC。PCM1738的信噪比和动态范围都是117dB,总谐波失真加噪音为-108dB,应该说胜过PCM1704,但它的价格远低于PCM1704(K级)的25美元,只要5美元。Analog Device公司也非常擅长制作极品级的DAC芯片,象金嗓子从来都是只用Analog Device的芯片,在DAC芯片的理论设计上,Analog Device拥有至高无上的地位,Analog Device早在1998年就发明了多比特Delta-sigma调制,因为传统的单比特Delta-sigma调制,导致离散到连续的边界每步尺寸过大,从而对主时钟的稳定程度要求极高,例如要想在可闻频域内达到100dB以上的信噪比,那么主时钟的时基抖晃不能大于10PS,可这是不可能的,所以高信噪比的取得必须放弃单比特Delta-sigma调制。多比特Delta-sigma调制的缺点是不方便采用DWA程序,模拟元件引起的噪音无法避免,如果采用DWA程序,那么要求输入信号的格式低于18bits,可是现在是24bits的天下。显然无法接受。Analog Device另觅蹊径,采用了分段噪音整形技术解决了这一难题。而Burr-Brown则在一开始就将信号分流。传统的单比特解码必须采用开关电容,并且大约每增加一比特的转换精度,电容就要增加四倍,要知道每个电容都会制造噪音,并且大电容会对配合开关电容网络的运算放大器要求更高的转换速率,所以采用开关电容网络的DAC芯片,高转换精度会造成一定限度的声音品质下降,如果设计不良,有可能越高的转换精度声音越差,听感上声音过于清丽以致声音单薄。Analog Device采用电流脉冲型DAC,电流型DAC的脉冲电流输出上升与下降时间不平均,要采用一般的电压电流转换运算放大器会导致转换线性下降,对时基抖晃也很敏感,Analog Device采用双回转零开关电路解决了。此技术是于SONY联合开发的,最早用于SONY的顶级ES系列。因为电流脉冲型采用一个异常纯净的瞬间电流源,电流脉冲不会再有任何波纹,几乎可以等同于完美的方波。音质会非常纯净。 自1999年以后,Analog Device发现音响市场萎缩,于是转而对SHARC型通用DSP芯片的开发与研究,没有再对DAC作进一步的研究,尽管如此,Analog Device在1998年推出的DAC芯片AD1853,仍旧是目前最高级的DAC芯片,丝毫不比PCM1738或SM5865差,虽然这些芯片都是 2001推出的,但无论在性能还是技术上,AD1853都不差。并且AD1853还是世界上第一块取样频率为192KHz的DAC芯片,它还是世界上对时基抖晃敏感程度最低的DAC芯片,它的信噪比为120dB,动态范围是117dB,总谐波失真加噪音为—107dB,和SM5865相比应该说旗鼓相当,不分高下。对于目前新兴的音频格式的DAC芯片也应该有所了解。 DVD-AUDIO格式仍然使用PCM编码,所以DVD-AUDIO的DAC解码芯片与CD的解码芯片原理相同,只是要求更高的转换精度和取样频率以及输入格式宽度。 SACD就不同了,它在录制的时候,将输入的模拟信号经过Delta-sigma调制变为单比特取样频率为2822.4kHz的二进制数字信号,并且这时的数字信号已经是脉冲密度调制信号(PDM),所以在进行单比特解码时不必再加取样点和噪音整形电路,只要通过开关电容网络和模拟低通滤波器,就可以得到模拟信号。所以电路非常简单,并且在数模转换级没有任何数字运算电路更没有时钟基准产生电路,也就不会有任何数字噪音的混入,声音的纯净度极高。SONY的SACD机没有采用开关电容网络,而是采用了最高等级的电流脉冲型数模转换。顺便提一下,CD信号也是先将输入的模拟信号经过Delta-sigma调制变为16比特取样频率为44.1kHz的二进制信号,然后还得经过一个数字抽选滤波器,任何数字滤波器都会制造无法忽略的噪音,还有通频带内纹波和铃振的现象,降低了声音的纯度。SACD无论是录制还是重放系统中都没有一个数字滤波器,而CD不仅在录制时还是在重放时都有,单比特系统还要再加一个内插取样点滤波器。音质的纯度根本无法与SACD相比,SACD是现阶段声音纯度最高的记录媒体和重放系统,最接近与真实的声音。目前世界上有三片SACD用的DAC芯片,一是SONY的SACD机上用的DSD1700,由Burr-Brown公司制造。二是NPC公司的 SM5866,三是CRYSTAL的CS4392,但没有公开发售。由于SACD考虑到要有现阶段最优秀的声音表现,所以一般都采用电流脉冲型数模转换电路,这种电路一般都用分离元件构成,故DSD1700和SM5866 内部实际上主要就是模拟低通滤波器,严格地说DSD1700和SM5866不是DAC芯片,而是模拟低通滤波器芯片。DSD设计只能用于SACD系统,它的内部主要是四组模拟低通滤波器,分别是热端正向和反向滤波和冷端正向和反向滤波,每组滤波器内部是8个三端无限脉冲响应滤波器。四组滤波器最终输出双差分电路。DSD动态范围是110dB,信噪比是110dB,总谐波失真是—100dB,高频响应为100KHz(—3dB)。NPC公司的SM5866推出于2000年9月22日,它可用于SACD和DVD-AUDIO系统。其内部资料没有公布。它的信噪比为120dB,总谐波失真加噪音为—109dB,高频响应为100KHz(—1dB)。很明显要比DSD1700高一个级别。

故障了。

采用飞利浦激光头的影碟机使用一段时间后,容易出现冷机不读碟的故障。其原因主要是激光头脏污造成的。这种故障的处理方法有两种一是在激光头底部加一只电阻,利用其发热来促使激光头工作。二是将激光头全部拆开彻底清洗。前一种方法未从根本上排除故障,不宜采用,后一种对技术水平要求较高,且容易造成激光头彻底报废。根据经验,多数飞利浦激光头一般不需要全部拆开清洗。办法是首先用酒精棉球擦拭物镜,试机观察是否能读碟,若不能排除。则用尖头镊子轻轻撬引用。

飞利浦电子是世界上最大的电子公司之一,在欧洲名列榜首。在彩色电视,照明,电动剃须刀,医疗诊断影像和病人监护仪,飞利浦电子是世界上最大的电子公司之一,在欧洲名列榜首。在彩色电视,照明,电动剃须刀,医疗诊断影像和病人监护仪,以及单芯片电视产品领域世界领先。在60多个国家里活跃在照明,消费电子,家用电器,半导体和医疗系统等领域。飞利浦在纽约证券交易所代号为PHG伦敦,法兰克福,阿姆斯特丹和其它股票交易所中上市。飞利浦是个综合性大集团,旗下部门有消费电器,飞利浦半导体,飞利浦照明,飞利浦医疗系统,飞利浦家庭小电器与个人护理。在财富杂志电子行业排名30强中位居世界第十。

场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。

场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。

一、场效应管的特性

场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。

高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。

场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。

场效应管具有更好的热稳定性和较大的动态范围。

场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。

普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。

场效应管的防辐射能力比普通晶体管提高10倍左右。

转换速率快,高频特性好。

场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。

场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。

绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。

VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受爱乐人士青睐,因而在音响领域有着广阔的应用前景。VMOS管和一般MOS管一样,也可分为N型沟道和P型沟道两种、增强型和耗尽型四类,分类特征与一般的MOS管相同。VMOS场效应管还有以下特点。

输入阻抗高。由于栅源之间是SiO2层,栅源之间的直流电阻基本上就是SiO2绝缘电阻,一般达100MΩ左右,交流输入阻抗基本上就是输入电容的容抗。

驱动电流小。由于输入阻抗高,VMOS管是一种压控器件,一般有电压就可以驱动,所需的驱动电流极小。

跨导的线性较好。具有较大的线性放大区域,与电子管的传输特性十分相似。较好的线性就意味着有较低的失真,尤其是具有负的电流温度系数(即在栅极与源极之间电压不变的情况下,导通电流会随管温升高而减小),故不存在二次击穿所引起的管子损坏现象。因此,VMOS管的并联得到了广泛的应用。

结电容无变容效应。VMOS管的结电容不随结电压而变化,无一般晶体管结电容的变容效应,可避免由变容效应招致的失真。

频率特性好。VMOS场效应管的多数载流子运动属于漂移运动,且漂移距离仅1~1.5um,不受晶体管那样的少数载流子基区过渡时间限制,故功率增益随频率变化极小,频率特性好。

开关速度快。由于没有少数载流子的存储延迟时间,VMOS场效应管的开关速度快,可在20ns内开启或关断几十A 电流。

二、场效应管的主要参数及选用

为了正确安全运用场效应管,防止静电、误 *** 作或储存不当而损坏场效应管,必须对场效应管主要参数有所了解和掌握。场效应管的参数多达几十种,现将主要参数及含义列于表1,作为参考。

场效应管的选用应注意以下几点。

场效应管的ID的参数按电路要求选取,能满足功耗要求并略有余量即可,不要认为越大越好,ID越大,CGS也越大,对电路的高频响应及失真不利,如ID为2A的管子,CGS约为80pF;ID为10A的管子,CGS约为1000pF。使用的可靠性可通过合理的散热设计来保证。

选用VMOS管的源漏极耐压BVDSS不要过高,能达到要求即可。因为BVDSS大的管子饱和压降也大,会影响效率。结型场效应管则要尽可能高些,因为他们本来就不高,一般BVDSS为30~50V,BVGSS为20V。

VMOS管的BVGSS尽可能高些,因为VMOS管子栅极很娇气,很容易被击穿,储存或 *** 作要慎之又慎,防止带静电的物体接触管脚。在储存中要将引出脚短路,并用金属盒屏蔽包装,以防止外来感应电势将栅极击穿,尤其要注意不能将管子放入塑料盒子或塑料袋中。为了防止栅极感应击穿,在安装调试中要求一切仪器仪表、电烙铁、电路板以及人体等都必须具有良好的接地效果,在管子接入电路之前,管子的全部引脚都必须保持短接状态,焊接完毕后方可把短接材料拆除。

配对管要求用同厂同批号的,这样参数一致性好。尽量选用孪生配对管,使管子的夹断电压和跨导尽可能保持一致,使配对误差分别小于3%和5%。

尽可能选用音响专用管,这样更能适合音频放大电路的要求。

在安装场效应管时,位置要避免靠近发热元件。为了防止管子振动,要将管子紧固起来,管脚引线在弯曲时,应当大于根部距离5mm处进行弯曲,以防止弯曲时拆断管脚或引起漏气而损坏管子。管子要有良好的散热条件,必须配置足够的散热器,保证管子温度不超过额定值,确保长期稳定可靠工作。

三、音频放大器艺术魅力及评价

音频放大器按所用放大器件可分为电子管放大器、晶体管放大器、集成电路放大器、场效应管放大器以及由上述所用器件两种或两种以上组成的混合放大器,各类放大器电路及所用元器件也是五花八门、千变万化,由此对音源的重放音质又各具特色,很难说哪一种放大器能以偏概全、技压群芳成为万能放大器。

电子管放大器由于空间电荷的传输时滞作用,重放音色温暖柔和,尤其是弦乐人声,表现为醇美剔透,耐人寻味。晶体管以及集成电路放大器具有犀利的分析力、宽阔的频响和强劲的动态,具有朝气蓬勃、催人奋进的感召力。场效应管放大器以及混合器件放大器,力图综合电子管和晶体管音频特性,开创异彩,让乐声更传神,让音色更完美。

近些年来,随着电子电脑技术的不断发展,各种电子合成器、各种音频效果器和胆音效果器软件以及虚拟扬声器技术层出不穷。这使得音频放大器硬件的发展和普及远远赶不上软件的速度,在精确度上硬件往往也赶不上软件,如电脑模拟3D效果逼真度大大超过真实3D效果,不受听音室的空间以及声源合成的限制,同时也节省投入硬件的开支。

绿色音响、双料发烧—— 电脑音响很有可能会成为未来音响的主流,硬件不行软件来,实行软硬兼施,功能强悍,集中体现了高效、便捷、神奇以及经济的特点。如在电脑中设置虚拟光驱,每次播放乐曲时,就不必启动物理光驱,这样不仅减少等待曲目时间及物理光驱的磨损,更重要的是消除了物理光驱的噪声,实现高保真放音。再如,胆管功放放音柔和耐听,而制作成本不薄,并且取得靓音的要件比较多,而通过胆音效果器软件,可为我们在电脑中造就一个“软胆”,就可以模拟出胆机的音色。目前电脑多媒体音响正处于进阶时期,并与电视也架起了沟通的桥梁,其前景是十分灿烂诱人的!电脑以及音响发烧友,是一个不惜时间和精力,积极探索追求音质的特殊层面,将继续担起一份爱乐责任,生活中多一首甜美的歌声,就少一幕苦涩的纷争。无论是普通音响,还是电脑多媒体音响,功率放大器依然是音频能量扩大推动扬声器出声不可或缺的终端,各类放大器均能较好地实现这一功能。不过现代人们对音响(技术因素为主,如频率响应、失真度、信噪比等)和音乐(艺术魅力为主,如声底是否醇厚、堂音是否丰富、听感是否顺耳等)的苛求愈来愈高,不少“金耳朵”能够听出歌手的齿音、口角以及身临其境、直逼现场的感觉,因此对音频放大器重放音色也寄予更大的要求,努力以特色音响塑造迷人的音乐氛围。

各类音频放大器具有各自的优点及属性,也各有其不足之处,而场效应管放大器主流兼具晶体管和电子管两者的优势,同时还具备两者所没有的优势。在电路程式上,大量实践证明,单端甲类功放是以效率换音质的典范,具有无与伦比的音乐魅力。不少发烧友从单纯追求音质出发,反复制作功放,反复对比听音,最终为A类所动,似乎觉得没有A类的音乐犹如孤独的音乐。

四、单端甲类放大器性能刍议

放大器按工作状态的不同一般可分为3类:①A类放大器,又称为甲类放大器;② AB类放大器,又称为甲乙类放大器;③B类放大器,又称为乙类放大器。在这3类放大器中,线性最好,音色最靓的是A类放大器,而单端甲类放大器与推挽放大器在设计上一个不同之处,就是使用一个放大器件来放大整个音乐波形。而推挽设计采用两个放大器件,分别放大信号的正负半周,包括一些推挽甲类放大器。单端甲类放大与推挽放大一个显著的不同特征就是放大后的音乐波形是一个完整的与输入波形十分相似的波形,没有推挽放大正负波形的交越失真,尽管推挽放大采用配对精度高达2% 误差甚至更小误差的孪生管,但这只是一个片面性的数字描述,事实上正负波形不可能交接得好,加之电路元器件非线性引起的相移存在,交越失真将进一步增大,当然失真与音色在一定程度上并不对立,这要看设计放大器的用途和目标,并非推挽放大就此罢休,况且推挽放大器中,由于存在多次谐波,虽然原配正负波形交接不好,但谐波交接不能否定,只是与单端波形相比难以抗衡。

关于推挽放大谐波尤其是偶次谐波会相互抵消这一说法,笔者不予完全认同,只有相移失真达180°或360°等谐波成分才会相互抵消。如推挽功放中的直流高压中的交流纹波经推挽变压器中心抽头平均分成两路,由于两臂线圈极性相反,相差180°,交流纹波几乎被完全抵消。

单端甲类放大器具有最自然的音乐性,其不对称性与空气受压缩与扩展的特性相似。由于组成空气含量最多的为非极性分子氮气(N2),约占78%,因此空气是压强能变得非常高的“单端无极”媒介,使得单端A类乐声最传神,音色最醇美。

五、VMOS场效应管单端甲类功放的制作

设计放大器有两个基本原则:一是简单,二是线性。而能做到最简单的放大器线路就是单端甲类了,简单不是单端甲类放大使用的唯一理由,是因为单端甲类具有最迷人的音乐感。在A类、B类、AB类线路程式中,线性最好的是甲类,而不足之处就是效率是最低的,约为20%,是以效率换音质的典范。

在单端甲类放大电路中使用的放大器件也有一番讲究。晶体管具有太低的输入阻抗,电子管的输入阻抗很高,但其输出阻抗也比较高,从原理上讲电子管并不适合做功放输出管,因此唯一的选择是场效应管。场效应管具有很高的输入阻抗和跨导,也能输出很大的电流,很适合应用在单端甲类放大器中。而在众多的场效应管中,用VMOS场效应管制作的单端甲类放大器,更领风骚,魅力独特。高端的钛膜声,中频饱满细腻流畅的磁性声,d性十足震撼人心的低频轰炸声,别有一番霸道气势。

在一般的设计中场效应管特长没有得到充分发挥,甚至认为声音偏冷、偏暗,其实这不是场效应管的原因。其声音不好,一方面是人们使用它直接代换晶体管,晶体管的线路是不能发挥出场效应管的特性的;另一方面,这些电路通常使用AB类的偏置。根据场效应管转移特性,在低偏置时具有严重的非线性,带来严重的失真,解决的办法是让其工作在A类状态,特别是单端A类,瞬态特性极佳,音质纯美,偶次谐波丰富,音色悦耳动听,更具有电子管的醇美音色。

1.电路原理

10W单端A类场效应管功放电路

单端甲类场效应管功放电路五花八门,各有特色,本机电路如附图所示。为了获得靓丽的音色,采取简洁至上原则,多一个元件多一分失真,多一条线路多一分失真。现将电路原理作一简述,以抛砖引玉,其主要特点有以下一些。

(1)为了避免普通音量电位器传输失真,非稳态接触电阻、摩擦噪声和 *** 作易感疲惫之嫌,本机采用音响型极低噪声VMOS场效应管IRFD113作指触音量控制。其相对于键控音量电路又减少了一些元件,并加以屏蔽,使音量控制部分的噪声系数达到1dB以下(VMOS场效应管噪声系数在0.5dB左右),敢与高档真空步进电位器或无源变压器电位器抗衡,手感更贴切人性化。

VMOS场效应管内阻高,属电压控制器件,在栅极及源极之间连接充电电容,由于栅漏电流极小,电容电压在很长一段时间内能基本保持不变。当管子工作于可调电阻区时,其漏源极电阻将受到栅源极电压即电容的电压所控制,这时管子相当于压控可变电阻,当指触(依手指电阻导电)开关S1闭合,即向电容充电,当指触开关S2闭合,即将电容放电,从而达到以电压控制漏源极电阻的目的。将其按入音响设备中,即可调节音量的大小。S1和S2可用薄银片或薄铜片制作,间距2mm左右,待调试后确定,音量增减量设置在±2dB左右。

(2)由IRF510作电压放大,放大后的音频电压直耦至上臂管IRF150进行扩流并作源极输出,下臂管IRF150构成恒流源,直流为通路,交流为开路,使交流信号通过输出电容推动扬声器。

(3)由于VMOS场效应管具有负的电流温度系数,即在栅极与源极之间电压不变的情况下,导通电流会随管温升高而减小,从而避免管子二次击穿。但管子温度的变化与电流的变化速率相差甚远,对此为了防止负温度系数惯性延迟而影响工作状态,本机在IRF510阴极串上一只适当阻值的正温度系数补偿电阻(100Ω/2W ),以起到缓冲作用。其原理是当没有阴极电阻时,IRF510栅源电压是恒定的固定偏压,与管子电流变化无关,加上阴极电阻后,当管流减小时,源极电位也降低。而相对于栅极来说,栅极电位便提高了,这样栅源电压就增大了,此时管子电流便增加了,从而适量抵消负温度系数产生的电流陡坡现象。阴极电阻阻值大小决定这种作用的大小,从而起到适当的缓冲作用,此电阻并不是电流负反馈电阻。

(4)本机经考虑后不采用OCL即无输出电容电路,一则是为了扬声器安全,二则考虑零点失调电压尤其是动态时对扬声器音圈产生直流偏磁位移,直接影响扬声器性能,从而劣化音质。由于大容量输出电容多为电解电容,一般认为噪声较大,而实际上这是一个信噪比的问题,关键是应用在什么电路,如将电解电容用在动圈唱头放大电路,就不合适,动圈唱头信号只有2mV左右,要求放大电路具有较高的信噪比,用电解电容信噪比就低。而将电解电容用于功放末级输出,情况就不一样了,信噪比相对低电平电路会有大幅度提高。另外一点,电解电容在使用前最好进行通电老化,并择优选用,然后上机后再进行充分煲机,这样可降低噪声系数。没有噪声的元器件是没有的,关键要合理运用,并采取措施,以达到必要的目的。本机为了减小输出电解电容由于感抗对高频的影响,用3只电解电容并联以减小感抗,并将扬声器的负极接电解电容的负极,以钳位电解电容漏电流产生的音圈偏磁位移。

(5)本机场效应管偏压由电源模块LM7812提供,功放电源不采取稳压电源供电,以避免限制乐声的低频力度和动态,即降低电压换电流,降低功率换音质。

2.制作调试

制作本机时,两声道要用独立电源供电,以提高分离度,减少干扰,并增强各声道工作稳定性。本机后级由于采用直耦电路,所以工作点会相互牵制,需反复调试几次才能完成,IRF510工作电流约为20mA,上下两管IRF150(配对)工作电流约为1.5A,栅源电压约为3.8V,反复调节这两级偏压电阻,使中点电压为l8V。不同产地、不同批次管子会有所出入,数据仅作参考,最好使用示波器将其调节为A类最佳工作状态。否则,由于管子的离散性,即使工作点按手册或特性曲线给出的参数调节工作点,也未必工作在最佳的A类状态。本机可代用的场效应管较多,不同管子参数、特性及音色也有差异。表2列出几种常用管子参数供参考。本机其他元器件选用可参考有关资料,在此不再赘述。

表2 几种常用场效应管主要参数

单端电路是耗电大户,本机输出管单管热损耗约30W ,提高工作电压还可增加输出功率,但热损耗也相应增加。因此,必须将管子装在一块热阻不大于1kΩ/W的散热器上,规格不小于200mm×200mm×6mm,将管子用硅脂涂抹后紧固在适当的位置上。

3.参数指标

实测技术指标见表3。

表3 实测技术指标

4.测评试听

本机测评试听搭配器材如下:

(1)飞利浦(Philips)LHH-500型顶级CD唱机;(2) 自制直热管3A5前级;

(3) 意大利傲霸卡丝音箱;

(4) 美国音乐丝带Super Flatine Cable音箱线;(5) 高度风Ortofon AC-5000 8N无氧铜信号线;(6) 日立4N单品铜3×3.5mm 硅橡胶电源线;(7) G&W TW-05D型音频专用电源净化器。

场效应管 STD45N10F7 的参数

制造商: STMicroelectronics

产品种类: MOSFET

RoHS:  详细信息

技术: Si

安装风格: SMD/SMT

封装 / 箱体: TO-252-3

通道数量: 1 Channel

晶体管极性: N-Channel

Vds-漏源极击穿电压: 100 V

Id-连续漏极电流: 45 A

Rds On-漏源导通电阻: 18 mOhms

Vgs th-栅源极阈值电压: 4.5 V

Vgs - 栅极-源极电压: 20 V

Qg-栅极电荷: 25 nC

最小工作温度: - 55 C

最大工作温度: + 175 C

配置: Single

Pd-功率耗散: 60 W

商标名: STripFET

封装: Cut Tape

封装: MouseReel

封装: Reel

系列: STD45N10F7

晶体管类型: 1 N-Channel

商标: STMicroelectronics

CNHTS: 8541290000

下降时间: 8 ns

HTS Code: 8541290095

MXHTS: 85412999

产品类型: MOSFET

上升时间: 17 ns

工厂包装数量: 2500

子类别: MOSFETs

TARIC: 8541290000

典型关闭延迟时间: 24 ns

典型接通延迟时间: 15 ns

单位重量: 4 g


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9201514.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存