半导体器件简介及详细资料

半导体器件简介及详细资料,第1张

简介

半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。

分类 晶体二极体

晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。

双极型电晶体

它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。

场效应电晶体

它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。

根据栅的结构,场效应电晶体可以分为三种:

①结型场效应管(用PN结构成栅极)

②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)

③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。

在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。

命名方法

中国半导体器件型号命名方法

半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:

第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体

第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。

第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。

第四部分:用数字表示序号

第五部分:用汉语拼音字母表示规格号

例如:3DG18表示NPN型矽材料高频三极体

日本半导体分立器件型号命名方法

日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:

第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。

第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。

第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。

第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。

第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。

美国半导体分立器件型号命名方法

美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:

第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。

第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。

第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。

第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。

第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。

国际电子联合会半导体器件型号命名方法

德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:

第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料

第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。

第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。

第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。

除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:

1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。

2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。

3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。

如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。

积体电路

把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。

光电器件 光电探测器

光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。

半导体发光二极体

半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。

半导体雷射器

如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。

光电池

当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。

其它

利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。

未来发展

今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。

这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。

这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。

毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。

图书信息

书 名: 半导体器件

作 者:布伦南高建军刘新宇

出版社:机械工业出版社

出版时间: 2010年05月

ISBN: 9787111298366

定价: 36元

内容简介

《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。

《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。

作者简介

Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。

图书目录

译者序

前言

第1章 半导体基础

1.1 半导体的定义

1.2 平衡载流子浓度与本征材料

1.3 杂质半导体材料

思考题

第2章 载流子的运动

2.1 载流子的漂移运动与扩散运动

2.2 产生-复合

2.3 连续性方程及其解

思考题

第3章 结

3.1 处于平衡状态的pn结

3.2 不同偏压下的同质pn结

3.3 理想二极体行为的偏离

3.4 载流子的注入、拉出、电荷控制分析及电容

3.5 肖特基势垒

思考题

第4章 双极结型电晶体

4.1 BJT工作原理

4.2 BJT的二阶效应

4.2.1 基区漂移

4.2.2 基区宽度调制/Early效应

4.2.3 雪崩击穿

4.3 BJT的高频特性

思考题

第5章结型场效应电晶体和金属半导体场效应电晶体

5.1 JFE

9月15号华为麒麟系列高端芯片,包括全新的麒麟9000,在售的麒麟990或都将迎来断供。这意味着接下来即将发布的全新旗舰,Mate40系列手机不仅产能有限,而且将会是麒麟系列芯片的绝版手机。华为手机或将退回联发科时代。

而这样的结果,原因已经人尽皆知,美国的疯狂制裁,遏制华为这类中国半导体企业。就是为了限制中国半导体产业的天花板高度,你可以做得比别人好 但是你不能超过我,归根到底就是钱。

目前中国每年的半导体产品进口额,已超过三千亿美元。贸易逆差超两千亿美元。这样的逆差是什么概念?也就是说我们每年要给半导体全球产业链上的国家,贡献两千多亿美元,两千亿美元的外汇又是什么概念,我们每年的原油进口额不到两千亿美元。随着中国互联网的全面扩大,半导体产品进口已经悄无声息地成为进口商品第一大项目。如果我们在半导体上取得突破,某些人不仅会失去全球最大的客户,还会被自己的客户抢去饭碗,也正是因为这样的逆差,我们更要下定决心发展自己的半导体产业。

目前旧版的EDA软件还能用,各种公版芯片架构也还没被限制授权。华为芯片设计水平依然能处于世界一流水平,麒麟9000芯片制程已经缩小到5纳米级别。能够媲美苹果旗舰芯片。其实,看美国人有多紧张,就能知道今天的华为有多出色。目前被抓住咽喉的是如何把设计变成产品,至于为什么说是目前,不言而喻,EDA设计软件停更 架构限制授权,都会成为美国接下来的限制工具。目前美国砍向华为的大刀是让华为喘不过气来的荷兰阿斯麦尔EUV光刻机。我们不生产芯片,我们只是光刻机制造商。这是一家一年卖222套机器,净利润就有14.67亿欧元的光刻机垄断企业。

阿斯麦尔也是全球唯一一家,能够提供7纳米及以下制程的企业,为什么这么牛X的企业不在法国,不在美国。而是在一个以发达农业著称。全球工作时间最短的荷兰。

1984年阿斯麦尔和飞利浦合资成立阿斯麦尔,后来阿斯麦尔买下了飞利浦的股份,成为阿斯麦尔独资公司。成立之初只有31名员工,那时候的光刻机还是日本和美国企业的天下。

一直到2007年,阿斯麦尔都没办法在尼康面前抬起头,直到台积电的工程师林本坚提出浸润式光刻机。阿斯麦尔翻身的日子来了。日美没有光刻机公司愿意和台积电联合研发浸润式光刻机。阿斯麦尔决定赌一把,和台积电合作,最终成功实现了132纳米的芯片工艺。一把把尼康甩在身后,阿斯麦尔的EUV光刻机迅速走红。台积电、英特尔年年砸钱抢着要,荷兰只是阿斯麦尔的注册地背后是整个欧洲和美国的支持。德国工业的蔡司镜头,Cymer的光源技术,HMI的电子束检测设备等。阿斯麦尔自然也受到美国的监管和扶持,也正是因为荷兰实力较弱,把阿斯麦尔放在荷兰让美国人很放心。

两年前我们好说歹说,为荷兰送去天价的贸易订单,换来阿斯麦尔2019年向中芯国际,交付两台极紫外EUV光刻机,但是这两台光刻机目前来看已经是化为泡影。等到若干年后阿斯麦尔履行合同已经是老旧产品,人类文明发展到如今,一块芯片是目前人类文明最为顶尖的体现,一台顶级光刻机是比航母战斗群还要致命的国之重器。

美国人自然要牢牢抓着光刻机,美国掌握全球半导体产业的话语权这点不奇怪。要分析的是美国为什么会掌握着全球半导体产业的话语权,向来在 科技 领域藐视美国的日本,为什么突然显得无声无息。

早在1946年,世界第一块PN结型晶体管在美国人威廉·肖克利的手中诞生。1960世界第一块硅集成电路在美国仙童半导体公司出现。标志着半导体产业进入“硅”时代。彼时的日本还是一个意气风发的少年,完全看不出是首都被炸得满目疮痍。两个城市挨过原子d的国家,战后的日本人什么都想做 也什么都能做。对于半导体而言,日本人志在必得。

1955年,索尼成立仅十年,开始涉足半导体产业,用来制造收音机。日本企业纷纷加入生产,大量爆款收音机涌入美国。十年后的1959年,一年内日本就制造了8600万个晶体管直接超越美国成为世界第一晶体管生产国,真的是初生牛犊不怕虎。日本又在一个行业超越了老大哥三菱、京都电气等也在日本政府的扶持下,在美国技术的基础上 涉足半导体产业,这种上下一心通力合作的单一民族国家,不可谓不可怕。

1973年石油危机爆发。经济衰退,欧美家庭加不起油也买不起电脑,半导体产业衰退。日本人的卡西欧计算器遭遇了滑铁卢。美国人又研发出了更先进的 IC集成电路。日本人就从危机中看到了机会,日本迅速落实DRAM制法革新,日本政府出资320亿日元。民间企业抱团出资400亿日元。差不多有2.36亿美元 这是70年代,日本VLSI 技术研究所由此成立,专攻电子计算机领域。日本最终实现了DRAM的全国产化,DRAM这个东西很常见,也就是现在计算机上的内存条,是一种作为存储功能的半导体元件。而这时候的中国,选择了解决温饱加强国防 科技 为优先的道路。

日本人没炸出核d,却炸出了一个半导体。日本继续投入研发在半导体的道路上迅速超越了美国。SUMCO、京瓷、东京电子等很多现在耳熟能详的日本企业在当年都是日本半导体产业链上的功勋企业,而在最关键的光刻机领域,日本也实现了国产化。尼康光刻机誉满全球。没错,早期的世界光刻机霸主是尼康。

1985年日本半导体市场占有率超过美国。日本企业占有率达53%,美国仅37%,拿得出手的公司只有德州仪器、因特尔、摩托罗拉,此时欧共体占12%。主要由飞利浦的阿斯麦尔贡献,当年谁也没想到这家阿斯麦尔才是最后的赢家。说个题外话,这一年的韩国也有1%的市场份额。总之,全球半导体产业已经由美国转移到日本。而且日本半导体已经强大到难以想象,用形容美国的词来说,就是一超多强。

除了战后美国要扶持日本,更因为日本自己就是一个DRAM大市场。仅 汽车 产业一块 每年就有源源不断的订单,而美国的半导体订单更多的是来自军方,其实看很多产业 美国和日本都是亦敌亦友的存在,不过是兄弟又能怎么样,本来是我吃肉你喝汤,现在把我的肉都吞了。

在PC还没普及的年代,全世界已经知道未来的工业引擎一定会从内燃机转移到半导体芯片上。正好赶上80年代国际局势缓和,日本在远东的政治作用下降,美日之间的贸易问题反而浮出水面。

仅在1985年,日本就给美国送去了497亿美元的贸易逆差。美国人对日本半导体产业的崛起已经不想忍了,美日半导体战争爆发,今天在中兴、华为身上发生的。在上个世纪的日本已经上演过。

第一波被针对的日本企业是三菱和日立,FBI假扮成IBM的员工,把10卷包含商业机密的文件,主动发给日立公司高级工程师林贤治。这位不幸的工程就这么上钩了。

1931年的南满铁路路轨和1937年的卢沟桥。日本人也是同样的手段 现在自己也要挨炮了,日本企业窃取美国技术的新闻迅速传开,日本威胁论也在美国大行其道。

1989年美国人最喜欢做的民意调查显示,68%的美国人认为日本是最大的敌人。第一次美日半导体谈判,美国要求没多的半导体,在日本的市场提升到20%~30%。建立价格监督机制。终止第三国倾销。加上一份《广场协定》和房地产增值,日本陷入经济泡沫。没办法,如果不让美国芯片进入日本市场,老大哥的各种的制裁让你不得安生,就不给你国防扶持。

1986年7月31日日本人签下了条约,但是美国半导体企业还是不争气,老爹都这样铺路了 市场份额还是不及日本企业。日本给美国制造的贸易逆差扩大到了586亿美元,美国人软硬兼施,先是在二战后第一次向日本低头,肯定日本半导体行业主动涨价。

1987年东芝事件被曝光,美国趁着东芝私自给苏联出口大型铣床为由,对东芝好一顿胖揍 目的自然是要打压东芝的半导体生产,1989年再次和日本签订了不平等条约《日美半导体保障协定》。

但是日本的半导体产业真的是小强完全打不死。美国人准备开始搞第三次《日美半导体保障协定》,这一回美国人开始玩起了套路,开始扶持韩国来和日本竞争,这时候全球通讯技术刚好进入1G时代。三星和现在的韩国车一样,凭借性价比出击市场,而日本企业还在走品质路线,所以吃了不少亏。美国帮助三星拿下东芝的半导体生产线 从日本企业挖人。美国对日本进口的半导体产品征税100%,对韩国半导体产品只征收象征性的0.74%,做到这一步 第三次《日美半导体保障协定》没有签署。因为美国的预期已经达到了。

韩国人也真不是吃素的,鹬蚌相争渔翁得利。三星迅速崛起,形成了全球半导体产业以美日韩三国鼎立的局面。

时间到了1995年,死扛了十余年的日本半导体企业终于喘不过气。NEC(第一)、东芝(第二)、日立制作所(第三)、富士通(第八)、三菱电机(第九)这个排名是1995年全球半导体产业企业排名。日本企业交出的成绩单,也是最后的光辉时刻。到了九十年代末期,日本半导体市场不仅被美国超越,还被韩国超越。全球半导体产业从日本转移到韩国,韩国还超越了美国,仅仅靠三星一家公司,而三星为什么能活到现在。

作为韩国最大的财阀,三星的股本有多少是美资,心知肚明,20世纪的最后一年,日本还能喘息的几家半导体企业联合成立Elpida,也就是尔必达。这个尔必达注定是个南明政权。美国人没有手下留情,继续出击,2012年尔必达宣布破产。

日本企业全面退出DRAM的全球竞争,尼康光刻机也在2007年败下阵来,日本半导体行业进入萧条期。回顾日本半导体产业成长的近半个世纪时间,政府牵头避免企业间重复研发,敏锐的嗅觉,超高的良品率,都是日本半导体辉煌的原因。失败的原因也很明显,除了来自老大哥的压力 日本也有自己的内因。

90年代末期,日本半导体公司就没有预期到PC时代的全面普及。在电脑芯片领域完全败下阵来,更别说在现在的智能手机时代分一杯羹了。不过瘦死的骆驼比马大,现在的日本半导体产业,还能老老实实为全球提供硅片、溅射靶材、光刻胶等半导体材料。每年依然赚的满满当当,而美国重新回到半导体产业的头把交椅,整个行业一直拿捏得死死的。

日本半导体产业当年挨打的 历史 ,和今天的华为如出一辙,还有中兴的前车之鉴,证明了一只狼,就算是已经吃饱的狼,不可能喂饱。不断割肉只会削弱自己的实力。在半导体产业上的落后,我们承认,但是我们不认输。由中芯国际已经能生产14纳米级别芯片,理论上可以在未来几年内完成对7纳米芯片的冲刺,而且能自主制造90纳米光刻机,底子还是有的。而摆在华为,中芯国际眼前的掣肘就是这个东西我知道长什么样子,但是我要怎么做出这个样子的东西,一台光刻机难倒了14亿中国人。除了光刻机,还要拿下EDA软件,更高自主性的架构才能设计出更高性能芯片。

这是一条非常长的路,可能是一场长达十余年的没有硝烟的战争。我们也没把鸡蛋放在一个篮子里,随着摩尔定律的逼近。如果阿斯麦尔这几年不能交付2纳米的EUV光刻机,全球半导体产业即将迎来天花板,不然芯片就要从纳米级跳进原子级别,想用 *** 刀原子来建造一座指甲盖大小的超级城市,这就不是地球上的光刻机能完成的了。

其实硅基半导体并不是信息产业唯一的支柱,如果说半导体技术是打开了20世纪的大门,那么叩响21世纪大门的 则是量子信息技术,在集成电路逐渐触及天花板的情况下,量子通信有望实现降维打击。传统的集成电路只能现实0或者1,需要进行大量运算,需要海量电路,属于二进制信息单元,即经典比特,而量子芯片能通过亚原子粒子编码数据,以量子比特进行运算,最大的优势就是能进行叠加态运算。

经典比特需要一次一次运算,需要更密集的集成电路。而量子比特可以用量子状态进行表示能同时进行一百次的运算或者存储,而且量子芯片能摆脱硅基的限制,能改变欧美光刻机垄断的局面。

中国在量子信息技术上已经走在了世界前列,世界首颗量子卫星“墨子号”世界第一条量子通信保密干线、京沪干线都由出自中国科学家之手,芯动不如行动,只要肯做 肯投入、肯合作、沉得住气,距离国产芯片摆脱掣肘的一天 并不会太远。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9203643.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存