半导体常见的晶体结构

半导体常见的晶体结构,第1张

决定半导体材料的基本物理特性,即原子或离子的长程有序的周期性排列。按空间点阵学说,晶体的内在结构可概括为一些相同点在空间有规则地作周期性的无限分布。点子的总体称为点阵,通过点阵的结点可作许多平行的直线组和平行的晶面组。这样,点阵就成网格,称为晶格。由于晶格的周期性,可取一个以格点为顶点、边长等于该方向上的周期的六面体作为重复单元,来概括晶格的特征。固体物理学取最小的重复单元,格点只在顶角上。这样的重复单元只反映晶体结构的周期性,称为原胞。结晶学取较大的重复单元,格点不仅在顶角上,还可在体心和面心上,这样的重复单元既反映晶格的周期性,也反映了晶体的对称性。

常见的半导体的晶体结构有金刚石型、闪锌矿型、纤锌矿型和氯化钠型4种,如图和表所示。在三元化合物半导体中有部分呈黄铜矿型结构,金刚石型、闪锌矿型和氯化钠型结构可看成是由两套面心立方格子套构而成。不同的是,金刚石型和闪锌矿型是两套格子沿体

对角线的1/4方向套构,而氯化钠型则是沿1/2[100]方向套构金刚石晶格中所有原子同种,而闪锌矿和氯化钠晶格中有两种原子闪锌矿型各晶面的原子排布总数目与金刚石型相同,但在同一晶面或同一晶向上,两种原子的排布却不相同。纤锌矿型属六方晶系,其中硫原子呈六方密堆集,而锌原子则占据四面体间隙的一半,与闪锌矿相似,它们的每一个原子场处于异种原子构成的正四面体中心。但闪锌矿结构中,次近邻异种原子层的原子位置彼此错开60°,而在纤锌矿型中,则是上下相对的。采取这种方式使次近邻异种原子的距离更近,会增强正负离子的相互吸引作用,因此,纤锌矿型多出现于两种原子间负电性差大、化学键中离子键成分高的二元化合物中。

光电效应分为:外光电效应和内光电效应。

内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。

外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。 在光的作用下,物体内的电子逸出物体表面向外发射的现象叫做外光电效应。

外光电效应的一些实验规律

a.仅当照射物体的光频率不小于某个确定值时,物体才能发出光电子,这个频率叫做极限频率(或叫做截止频率),相应的波长λ0叫做极限波长。不同物质的极限频率和相应的极限波长λ0 是不同的。

一些金属的极限波长(单位:埃): 铯 钠 锌 银 铂 6520 5400 3720 2600 1960 b.光电子脱出物体时的初速度和照射光的频率有关而和发光强度无关。这就是说,光电子的初动能只和照射光的频率有关而和发光强度无关。

c.在光的频率不变的情况下,入射光越强,相同的时间内阴极(发射光电子的金属材料)发射的光电子数目越多

d.从实验知道,产生光电流的过程非常快,一般不超过10的-9次方秒;停止用光照射,光电流也就立即停止。这表明,光电效应是瞬时的。

e.爱因斯坦方程:hν=(1/2)mv^2+I+W

式中(1/2)mv^2是脱出物体的光电子的初动能。金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,I项可以略去,爱因斯坦方程成为 hυ=(1/2)mv^2+W 假如hυ<W,电子就不能脱出金属的表面。对于一定的金属,产生光电效应的最小光频率(极限频率) u0。由 hυ0=W确定。相应的极限波长为λ0=C/υ0=hc/W。 发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。算式在以爱因斯坦方式量化分析光电效应时使用以下算式: 光子能量= 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ+Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s, f是入射光子的频率,φ是功函数,从原子键结中移出一个电子所需的最小能量, f0是光电效应发生的阀值频率,Em是被射出的电子的最大动能, m是被发射电子的静止质量, v是被发射电子的速度

注:如果光子的能量(hf)不大于功函数(φ),就不会有电子射出。功函数有时又以W标记。这个算式与观察不符时(即没有射出电子或电子动能小于预期)。爱因斯坦因成功解释了光电效应而获得1921年诺贝尔物理学奖。

基于外光电效应的电子元件有光电管、光电倍增管。光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。 当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。

1 光电导效应

在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。

当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。

基于这种效应的光电器件有光敏电阻。

2 光生伏特效应

“光生伏特效应”,简称“光伏效应”。指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。

光伏发电,其基本原理就是“光伏效应”。太阳能专家的任务就是要完成制造电压的工作。因为要制造电压,所以完成光电转化的太阳能电池是阳光发电的关键。

简单来说就是在光作用下能使物体产生一定方向电动势的现象。基于该效应的器件有光电池和光敏二极管、三极管。

①势垒效应(结光电效应)

光照射PN结时,若hf≧Eg,使价带中的电子跃迁到导带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向N区外侧,空穴偏向P区外侧,使P区带正电,N区带负电,形成光生电动势。

②侧向光电效应(丹培效应)

当半导体光电器件受光照不均匀时,光照部分产生电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负电,从而产生电动势,即为侧向光电效应。

③光电磁效应

半导体受强光照射并在光照垂直方向外加磁场时,垂直于光和磁场的半导体两端面之间产生电势的现象称为光电磁效应,可视之为光扩散电流的霍尔效应。

④贝克勒耳效应

是指液体中的光生伏特效应。当光照射浸在电解液中的两个同样电极中的一个电极时,在两个电极间产生电势的现象称为贝克勒耳效应。感光电池的工作原理基于此效应。

⑤紫外线光电效应

当紫外线照射到某些金属的表面时,金属内部的自由电子逸出金属表面,这种紫外线的光致电子发射构成了紫外线光电效应的内容之一。早在1887年德国物理学家 (1857~1894)在研究紫外线辐射时,首先发现光电发射现象。在1888年光电发射有被俄国物理学家斯托列托夫(1839~1896)用实验证明了这一现象。

3 光子牵引效应

当光子与半导体中的自由载流子作用时,光子把动量传递给自由载流子,自由载流子将顺着光线的传播方向做相对于晶格的运动。结果,在开路的情况下,半导体样品将产生电场,它阻止载流子的运动。这个现象被称为光子牵引效应。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9204125.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存