半导体空调原理:
半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即: Qab=Iπab
πab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab
帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即:
Qac=Qab+Qbc=(πab+πbc)I
因此绝对帕尔帖系数有πab=πa- πb
金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。
磁制冷冰箱原理:
磁冰箱是根据磁热效应的原理制成的。稀土元素钆(Gd)是一种具有巨磁热效应的金属,在等温磁化时向外界放出热量,在绝热去磁时温度降低,因而可从外界吸取热量,达到制冷目的。为了完成制冷循环过程,可先在高温环境中对工质施加外磁场,并等温地实现伴随着熵减少而进行的放热过程;然后在低温下撤去外磁场,让工质进行等温吸热,最后在这两个过程之间用适当的过程加以连接,就可完成制冷 *** 作。用不同种类的过程连接上述两个过程可以得到不同的磁制冷循环,如磁卡诺循环、磁斯特林循环、磁埃里克森循环以及磁布雷顿循环等。
磁卡诺循环是用绝热去磁和绝热磁化过程连接两个等温过程(见图1)。在这个循环中,外部对制冷工质所做的功相当于四边形ABCD的面积。下面以最简单的磁卡诺循环为例对绝热去磁制冷过程进行说明(见图2)。
等温磁化过程(图1中的AB过程):热开关Ⅰ闭合、Ⅱ断开,磁场施加于磁工质,使熵减小,通过高温热源与磁工质的热端连接,热量从磁工质传入高温热源。 绝热去磁过程(图1中的BC过程):热开关Ⅰ断开、Ⅱ仍断开,逐渐移去磁场,磁工质内自旋系统逐渐无序,在去磁过程中消耗内能,使磁工质温度下降到低温热源温度。 等温去磁过程(图1中的CD过程):Ⅱ闭合、Ⅰ仍断开,磁场继续减弱,磁工质从低温热源吸热。 绝热磁化过程(图1中的DA过程):Ⅱ断开、Ⅰ仍断开,施加一较小磁场,磁工质温度逐渐上升到高温热源温度。
由于室温附近磁性离子系统的热运动大大加强,磁性工质的磁有序度难以形成,在受外磁场作用前后的磁熵变大大减小,同时强磁场的产生也受到许多条件的限制,磁热效应也大减弱。为了进一步提高室温磁制冷机的效率,通常主要应用磁埃里克森循环制冷机,图3是金属钆在200~300K条件下的T-S图。若按磁卡诺循环制冷(图中1'23'4'1'),则温降很小。埃里克森循环(图中12341)由四个过程组成,1→2为等温磁化、2→3为等磁场过程(温度降低)、3→4为等温去磁(吸热制冷)、4→1为等磁场过程(温度上升)。
磁冰箱的核心是一个旋转装置,该装置包括含有金属钆片的转轮和一块高磁场强度稀土永磁铁。工作时,钆轮通过永磁铁缺口进入磁场后出现巨大的磁热效应,由此导致钆轮升温,系统内第一条循环管道的水将钆轮温度升高获得的热量带走,以使钆轮冷却;当钆轮离开磁场后,钆轮温度就会下降到低于它进入磁场前的温度,此时系统内第二条循环管道的水通过钆轮并被钆轮冷却,被冷却的水成为制冷源,可用于制冷;若用凝固点远低于纯水的液体(如水和乙醇的1:1混合液)作为制冷源,就可制成有冷冻功能的实用型冰箱。
这一科研成果彻底改变了传统的冰箱制冷系统,工作时只需驱动钆轮转动的发动机、抽水机的电力,从而节约了能源。该系统工作时无声、几乎无振动。如果用近年来新发现的GdSiGe系磁致冷材料(在室温附近,Gd5Si2Ge2的磁热效应是金属钆的两倍)或新近研究出的铁锰磷砷合金材料替代金属钆片,其制冷效率将更高。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)