台积电生产的是什么芯片

台积电生产的是什么芯片,第1张

是中国的,属于中国台湾,台积电的英文简称是"TSMC",刚开始台积电当然跟其他公司一样是一个不起眼的小公司,在不起眼的道路上崛起,现在国内手机手机芯片都是台积电制造工艺,以最先进的工艺技术打造,并且现在已经在亚洲排行第四科技公司,排在前面有的阿里、腾讯、三星,但是同时也是全球集成电路制造企业中技术最先进,在生活中人们使用的手机芯片、电脑芯片、数码产品中的芯片都是台积电生产制造。

台积电(台湾积体电路制造股份有限公司)是全球最大的芯片制造商,拥有世界最先进的芯片生产技术。属于半导体制造公司,成立于1998年,是全球第一家专业积体建路制造服务商,企业总部与主要工厂位于台湾新竹科学园区。

台湾积体电路制造股份有限公司,属于半导体制造公司。成立于1987年,是全球第一家专业积体电路制造服务(晶圆代工foundry)企业,总部与主要工厂位于中国台湾省的新竹市科学园区。下面小编给大家介绍一下“台积电生产什么芯片 台积电4nm制程工艺”

中科院量子信息重点实验室教授郭国平、肖明与合作者成功实现了半导体量子点体系的两个电荷量子比特的控制非逻辑门,成果于7月17日发表在《自然—通讯》上 。中科院量子信息重点实验室郭国平教授半导体量子芯片研究组及其合作者又破世界纪录,通过实验成功实现世界上最快速量子逻辑门 *** 作,取得半导体量子芯片研究的重要突破。

传统砷化镓半导体量子点量子比特研究

半导体量子点由于其良好的扩展性和集成性是实现固态量子计算的最有力候选者。由单电子在双量子点中的左右量子点的占据态编码的电荷量子比特有众多的优越性,成为量子计算研究最热门的研究方向。首先,电荷量子比特门 *** 作速度可以较大范围的调节,达到GHz的频率;其次,电荷量子比特的制备、 *** 控和读取可以用全电学 *** 控来完成;最后,电子电荷自由度作为量子比特可以与现有信息处理技术兼容,并且可以利用先进的半导体工艺技术完成大面积的扩展和集成。一个单量子比特逻辑门 *** 控和一个两量子比特受控非门可以组合任意一个普适量子逻辑门 *** 控,而实现普适量子逻辑门 *** 控是实现量子信息处理过程的最关键技术。国际上主要有美国哈佛大学、威斯康星大学等集中在电子电荷量子比特的量子计算研究,我们研究团队在2013年成功实现了半导体超快普适单比特量子逻辑门(Nat. Commun. 4:1401 (2013),经过两年的摸索和积累,研究组在2015年成功实现两个电荷量子比特的控制非门,其 *** 控最短在200皮秒以内完成。相对于国际上目前电子自旋两量子比特的最高水平,新的半导体两量子比特的 *** 控速度提高了数百倍。单比特和两比特的量子逻辑门的完成,表明量子计算所需的所有基本量子逻辑门都可以在半导体上通过全电控制方式实现。这种方式具有 *** 控方便、速度超快、可集成化、并兼容传统半导体电子技术等重要优点,是进一步研制实用化半导体量子计算的坚实基础。

图示为单量子比特 *** 控和两量子比特 *** 控实验样品和实验测量图。

新型非掺杂砷化镓和硅锗异质结量子比特的制备和 *** 控研究

传统的砷化镓量子点是基于掺杂的砷化镓铝异质结中的二维电子气上形成的。由于掺杂不可避免的削弱电子电荷和自旋的稳定性,从而增加了量子比特受到掺杂电子电荷噪声的影响,缩短了量子比特的弛豫时间,加快了量子比特的的退相干过程。以解决上述问题为目标,分别采用非掺杂GaAs和SiGe异质结进行新型双层结构量子点器件的设计和制备,减小电荷噪声的影响,排除核自旋的影响,延长量子比特的退相干时间,实现单电子电荷和自旋量子比特的制备、测量和 *** 控。新型量子点器件是继承传统量子点器件可集成性等优势的同时,又具有高迁移率、强稳定性的增强型量子点研究体系,是实现多量子比特耦合的基础。基于非掺杂砷化镓异质结的电荷量子比特和基于非掺杂SiGe异质结的电子自旋量子比特研究都是相关研究中的新兴热门领域,特别是基于SiGe量子点的自旋量子比特由于其没有核自旋,具有较长的量子退相干时间。我们研究团队成功制备了两种材料的双量子点器件,完成了砷化镓量子点的表征和电子弛豫时间以及退相干时间的测量,正在开展进一步的实验研究。图示为新型非掺杂砷化镓和硅锗双量子点样品的结构图和实验测量。

半导体量子点与超导腔耦合的复合量子比特以及多量子比特扩展

基于半导体量子点的量子计算方案都是利用相邻量子点量子比特之间的交换相互作用来实现多比特的量子逻辑门 *** 作,非近邻量子比特之间的逻辑门 *** 作需要通过一系列近邻门 *** 作组合完成,这大大增加了计算过程中逻辑门 *** 作的数量和难度。最近有些理论工作提出借用超导量子比特系统中的超导传输谐振腔等概念来实现半导体量子点非近邻量子比特耦合的量子数据总线,但是相应的实验还处于起步和摸索阶段。不过半导体量子点和超导谐振腔为我们提供一种崭新的物理体系,同时很好的兼容了传统半导体产业各种微纳米工艺和技术,在未来的信息处理器中具有广阔的应用前景。我们团队提出了最早的非强耦合条件下的超导传输谐振腔与量子点量子计算理论方案(Phys. Rev. Lett. 101 , 230501 (2008).),大大降低了实验的要求和难度。

我们研究团队在半导体量子点的制备和 *** 控方面积累了大量的实验经验和技术,对超导谐振腔体的制备和表征也掌握关键的工艺技术。经过几年研究积累,完成了超导谐振腔与石墨烯双量子点以及超导谐振腔与两个石墨烯双量子点实现远程耦合的实验研究,以此为基础着力于解决半导体量子点多比特之间的耦合问题,具有很大的理论和实验挑战性。我们目前的这些前期工作已属于世界研究前列,结合已开展的半导体量子点处理单元和测量单元研究,集中推进基于固态量子比特的多量子比特扩展研究。

基于新型二维材料(Graphene,TMDS)体系的量子器件制备和量子物理研究

二维材料体系由于其独特的结构和性质优越性,被科学界大量研究,特别是单层石墨烯材料,以及最近掀起一波研究热潮的TMD材料体系。我们研究团队在实验室内设计制备了多种石墨烯量子点元器件,2009年在国际上首先制备出石墨烯量子点+单电子测量器的芯片( Applied. Phys. Letters 97, 262113 (2010)),特别是制备出了世界上第一块并联的石墨烯双量子点样品( Applied. Phys. Letters 99, 112117 (2011)),开发了集成测量读出系统的全石墨单电子晶体管;设计了石墨烯量子点元器件的全电学 *** 控模式,掌握了精细调节电极控制量子点器件上电子状态的规律和方法;另外我们在国际上率先提出了石墨烯量子点量子计算的完整方案等;我们设计的石墨烯结构和尺寸等方面的优势在国际上也居于比较前列的位置。近期我们也开展了关于TMDs材料方面的量子器件研究,取得了一些重要的实验结果。

“量子芯片”是未来量子计算机的“大脑”。 2016年2月,国际权威杂志《物理评论快报》发表了中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室郭国平研究组在量子芯片开发领域的一项重要进展。该成果由郭国平研究组及合作者完成,首次在砷化镓半导体量子芯片中成功实现了量子相干特性好、 *** 控速度快、可控性强的电控新型编码量子比特。研究组利用半导体量子点的多电子态轨道的非对称特性,首次在砷化镓半导体系统中实现了轨道杂化的新型量子比特,巧妙地将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,实现了“鱼”和“熊掌”的兼得。实验结果表明,该新型量子比特在超快 *** 控速度方面与电荷量子比特类似,而其量子相干性方面,却比一般电荷编码量子比特提高近十倍。同时,该新型多电子轨道杂化实现量子比特编码和调控的方式具有很强的通用性,对探索半导体中极性声子和压电效应对量子相干特性的影响提供了新思路。

量子环的优势是:半导体量子环的限制势易于调节,电子的相干时间更长,利于实现更多的量子比特 *** 作。拥有更多的可 *** 作自由度。量子环中电子还具有在准一维空间轨道运动的自由度,提供了自旋这种电荷以外新的编码可能。

在吴振华和刘羽看来,以多电子半导体量子环构筑量子比特,是对现有单电子半导体量子点方案的新构想。实现量子计算的主要障碍是用于计算的量子态难以保持,就是常说的相干时间短。研究表明,相对于半导体量子点,半导体量子环的限制势易于调节,电子的相干时间更长,利于实现更多的量子比特 *** 作。半导体量子点只能对单个电子自旋进行精细 *** 控,对实验要求高难度大。而多电子量子环利用电子数目和电子自旋态混合编码实现量子比特,因此拥有更多的可 *** 作自由度。此外量子点中,电子被束缚在零维空间。量子环中电子还具有在准一维空间轨道运动的自由度,提供了自旋这种电荷以外新的编码可能。

不仅如此,“与半导体量子点一样,量子环同样可以利用现有的半导体工艺实现,从而可以基于现有技术较为平滑地从经典的半导体芯片过渡到量子芯片。”吴振华说。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9208015.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存