半导体功率器件静态参数测试仪系统 & 能测 IGBT. Mosfet. Diode. BJT......

半导体功率器件静态参数测试仪系统 & 能测 IGBT. Mosfet. Diode. BJT......,第1张

DCT2000半导体功率器件静态参数测试仪系统能测试很多电子元器件的静态直流参数(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on))。

测试种类覆盖7 大类别26分类,包括“二极管类”“三极管类(如BJT、MOSFET、IGBT)”“保护类器件”“稳压集成类”“继电器类”“光耦类”“传感监测类”等品类的繁多的电子元器件。

高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)

控制极/栅极电压40V,栅极电流10mA

分辨率最高至1mV / 1nA,精度最高可至0.5%

DCT2000半导体功率器件静态参数测试仪系统适用于功率器件测试还可测试“结电容”,支持“脉冲式一键加热”和“分选机连接”

第一部分:规格&环境

1.1、 产品信息

产品型号:DCT2000

产品名称:半导体功率器件静态参数测试仪系统

1.2、 物理规格

主机尺寸:深660*宽430*高210(mm)

主机重量:<35kg

1.3、 电气环境

主机功耗:<300W

海拔高度:海拔不超过4000m;

环境要求:-20℃~60℃(储存)、5℃~50℃(工作);

相对湿度:20%RH~75%RH (无凝露,湿球温度计温度 45℃以下);

大气压力:86Kpa~106Kpa;

防护条件:无较大灰尘,腐蚀或爆炸性气体,导电粉尘等;

电网要求:AC220V、±10%、50Hz±1Hz;

工作时间:连续;

第二部分:应用场景和产品特点

一、应用场景

1、 测试分析 (功率器件研发设计阶段的初始测试,主要功能为曲线追踪仪)

2、 失效分析 (对失效器件进行测试分析,查找失效机理。以便于对电子整机的整体设计和使用过程提出改善方案)

3、 选型配对 (在器件焊接至电路板之前进行全部测试,将测试数据比较一致的器件进行分类配对)

4、 来料检验 (研究所及电子厂的质量部(IQC)对入厂器件进行抽检/全检,把控器件的良品率)

5、 量产测试 (可连接机械手、扫码q、分选机等各类辅助机械设备,实现规模化、自动化测试)

6、 替代进口 (DCT2000半导体功率器件静态参数测试仪系统可替代同级别进口产品)

二、产品特点

1、程控高压源10~1400V,提供2000V选配;

2、程控高流源1uA~100A,提供40A,200A,500A选配;

3、驱动电压10mV~40V

4、控制极电流10uA~10mA;

5、16位ADC,100K/S采样速率;

6、自动识别器件极性NPN/PNP

7、曲线追踪仪,四线开尔文连接保证加载测量的准确

8、通过RS232 接口连接校准数字表,对系统进行校验

9、不同的封装形式提供对应的夹具和适配器(如TO220、SOP-8、DIP、SOT-23等等)

10、半导体功率器件静态参数测试仪系统能测很多电子元器件(如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等);

11、半导体功率器件静态参数测试仪系统能实现曲线追踪仪(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on) )

12、结电容参数也可以测试,诸如Cka,Ciss,Crss,Coss;

13、脉冲电流自动加热功能,方便高温测试,无需外挂升温装置;

14、Prober 接口、Handler 接口可选(16Bin),连接分选机最高效率1h/9000个;

15、半导体功率器件静态参数测试仪系统在各大电子厂的IQC、实验室有着广泛的应用;

第三部分:产品介绍

3.1、产品介绍

DCT2000半导体功率器件静态参数测试仪系统是由我公司技术团队结合半导体功率器件静态参数测试仪系统的多年经验,以及众多国内外测试系统产品的熟悉了解后,完全自主开发设计的全新一代“半导体功率器件静态参数测试仪系统”。软件及硬件均由团队自主完成。这就决定了这款产品的功能性和可靠性能够得到持续完善和不断的提升。

半导体功率器件静态参数测试仪系统脉冲信号源输出方面,高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)栅极电压40V,栅极电流10mA,分辨率最高至1mV / 30pA,精度最高可至0.5%。程控软件基于Lab VIEW平台编写,填充式菜单界面。采用带有开尔文感应结构的测试插座,自动补偿由于系统内部及测试电缆长度引起的任何压降,保证测试结果准确可靠。产品可测试 Si, SiC, GaN 材料的 IGBTs, DIODEs, MOSFETs, BJTs, SCRs 等7大类26分类的电子元器件。涵盖电子产品中几乎所有的常见器件。无论电压电流源还是功能配置都有着极强的扩展性。

产品为桌面放置的台式机结构,由测试主机和程控电脑两大部分组成。外挂各类夹具和适配器,还能够通过Prober 接口、Handler 接口可选(16Bin)连接分选机和机械手建立工作站,实现快速批量化测试。通过软件设置可依照被测器件的参数等级进行自动分类存放。能够极好的应对“来料检验”“失效分析”“选型配对”“量产测试”等不同场景。

半导体功率器件静态参数测试仪系统产品的可靠性和测试数据的重复性以及测试效率都有着非常优秀的表现。创新的“点控式夹具”让 *** 作人员在夹具上实现一点即测。 *** 作更简单效率更高。测试数据可保存为EXCEL文本,方便快捷的完成曲线追踪仪。

3.2、人机界面(DCT2000半导体功率器件静态参数测试仪系统)

第四部分:功能配置

4.1、 配置选项

DCT2000半导体功率器件静态参数测试仪系统的功能配置如下

4.2、 适配器选型

DCT2000半导体功率器件静态参数测试仪系统的适配器有如下

4.3、 测试种类及参数

DCT2000半导体功率器件静态参数测试仪系统的测试种类和参数如下

(1)二极管类:二极管  Diode

Kelvin,Vrrm,Irrm,Vf,△Vf,△Vrrm,Cka,Tr(选配);

(2)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin,Vz,lr,Vf,△Vf,△Vz,Roz,lzm,Cka;

(3)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin、Vz、lr、Vf、△Vf、△Vz、Roz、lzm、Cka;

(4)二极管类:三端肖特基二极管SBD(SchottkyBarrierDiode)

Kelvin 、Type_ident 、Pin_test 、Vrrm、Irrm、Vf、△Vf、V_Vrrm、I_Irrm、△Vrrm、Cka、Tr(选配);

(5)二极管类:瞬态二极管  TVS

Kelvin 、Vrrm 、Irrm、Vf、△Vf、△Vrrm 、Cka ;

(6)二极管类:整流桥堆

Kelvin 、Vrrm、Irrm、Ir_ac、Vf、△Vf、△Vrrm 、Cka;

(7)二极管类:三相整流桥堆

Kelvin 、Vrrm 、Irrm、Ir_ac、Vf、△Vf、△Vrrm、Cka;

(8)三极管类:三极管

Kelvin 、Type_ident、Pin_chk 、V(br)cbo 、V(br)ceo 、V(br)ebo 、Icbo、lceo、Iebo、Hfe、Vce(sat)、Vbe(sat)、△Vsat、△Bvceo 、△Bvcbo 、Vbe、lcm、Vsd 、Ccbo 、Cces、Heater、Tr (选配)、Ts(选配)、Value_process;

(9) 三极管类:双向可控硅

Kelvin、Type_ident、Qs_chk、Pin_test、Igt、Vgt、Vtm、Vdrm、Vrrm、Vdrm rrm、Irrm、 Idrm、Irrm_drm、Ih、IL、C_vtm、△Vdrm、△Vrrm、△Vtm;

(10)三极管类:单向可控硅

Kelvin、 Type_ident、 Qs_chk、 Pin test、 lgt、 Vgt、 Vtm、 Vdrm Vrrm、 IH、IL、△Vdrm△Vrrm、Vtm;

(11)三极管类:MOSFET

Kelvin 、Type_ident、Pin_test、VGS(th) 、V(BR)Dss 、Rds(on) 、Bvds_rz、△Bvds、Gfs、Igss、ldss 、Idss zero 、Vds(on)、 Vsd、Ciss、Coss、Crss、Bvgs 、ld_lim 、Heater、Value_proces、△Rds(on) ;

(12)三极管类:双MOSFET

Kelvin、 Pin_chk、Ic_fx_chk、 Type_ident、 Vgs1(th)、 VGs2(th)、 VBR)Dss1、 VBR)Dss2、 Rds1(on)、 Rds2(on)、 Bvds1 rz、 Bvds2_rz、 Gfs1、Gfs2、lgss1、lgss2、Idss1、Idss2、Vsd1、Vsd2、Ciss、Coss、Crss;

(13)三极管类:JFET

Kelvin、VGS(off )、V(BR)Dss、Rds(on)、Bvds_rz、Gfs、lgss、 Idss(off)、 Idss(on)、 vds(on)、 Vsd、Ciss、Crss、Coss;

(14)三极管类:IGBT

Kelvin、VGE(th)、V(BR)CES、Vce(on)、Gfe、lges、 lces、Vf、Ciss、Coss、Crss;

(15)三极管类:三端开关功率驱动器

Kelvin、Vbb(AZ)、 Von(CL)、 Rson、Ibb(off)、Il(lim)、Coss、Fun_pin_volt;

(16)三极管类:七端半桥驱动器

Kelvin、lvs(off)、lvs(on)、Rson_h、Rson_l、lin、Iinh、ls_Volt、Sr_volt;

(17)三极管类:高边功率开关

Kelvin、Vbb(AZ)、Von(CL)、Rson、Ibb(off)、ll(Iim)、Coss、Fun_pin_volt;

(18)保护类:压敏电阻

Kelvin、Vrrm、 Vdrm、Irrm、Idrm、Cka、 △Vr

(19)保护类:单组电压保护器

Kelvin 、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(20)保护类:双组电压保护器

Kelvin、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(21)稳压集成类:三端稳压器

Kelvin 、Type_ident 、Treg_ix_chk 、Vout 、Reg_Line、Reg_Load、IB、IB_I、Roz、△IB、VD、ISC、Max_lo、Ro、Ext _Sw、Ic_fx_chk;

(22)稳压集成类:基准IC(TL431)

Kelvin、Vref、△Vref、lref、Imin、loff、Zka、Vka;

(23)稳压集成类:四端稳压

Kelvin、Type_ident、Treg_ix_chk、Vout、Reg_Line、Reg_Load、IB、IB_I、Roz、△lB、VD、Isc、Max_lo、Ro、Ext_Sw、Ic_fx_chk;

(24)稳压集成类:开关稳压集成器

选配;

(25)继电器类:4脚单刀单组、5脚单刀双组、8脚双组双刀、8脚双组四刀、固态继电器

Kelvin、Pin_chk、Dip6_type_ident、Vf、Ir、Vl、Il、Ift、Ron、Ton(选配)、Toff(选配);

(26)光耦类:4脚光耦、6脚光耦、8脚光耦、16脚光耦

Kelvin、Pin_chk、Vf、Ir、Bvceo、Bveco、Iceo、Ctr、Vce(sat)、Tr、Tf;

(27)传感监测类:

电流传感器(ACS712XX系列、CSNR_15XX系列)(选配);

霍尔器件(MT44XX系列、A12XX系列)(选配);

电压监控器(选配);

电压复位IC(选配);

曲线追踪仪

第五部分:性能指标

DCT2000半导体功率器件静态参数测试仪系统的性能指标如下

5. 1 、 电流/电压源 ( VIS ) 自带VI测量单元

(1)加压(FV)

量程±40V分辨率19.5mV精度±1% 设定值±10mV

量程±20V分辨率10mV精度±1% 设定值±5mV

量程±10V分辨率5mV精度±1% 设定值±3mV

量程±5V分辨率2mV精度±1% 设定值±2mV

量程±2V分辨率1mV精度±1% 设定值±2mV

(2)加流(FI)

量程±40A 分辨率19.5mA精度±2% 设定值±20mA

量程±4A 分辨率1.95mA精度±1% 设定值±2mA

量程±400mA分辨率1195uA精度±1% 设定值±200uA

量程±40mA分辨率119.5uA精度±1% 设定值±20uA

量程±4mA分辨率195nA精度±1% 设定值±200nA

量程±400uA分辨率19.5nA精度±1% 设定值±20nA

量程±40uA分辨率1.95nA精度±1% 设定值±2nA

说明:电流大于1.5A自动转为脉冲方式输出,脉宽范围:300us-1000us可调

(3)电流测量(MI)

量程±40A分辨率1.22mA精度±1% 读数值±20mA

量程±4A分辨率122uA精度±0.5% 读数值±2mA

量程±400mA分辨率12.2uA精度±0.5% 读数值±200uA

量程±40mA分辨率1.22uA精度±0.5% 读数值±20uA

量程±4mA分辨率122nA精度±0.5% 读数值±2uA

量程±400uA分辨率12.2nA精度±0.5% 读数值±200nA

量程±40uA分辨率1.22nA精度±1% 读数值±20nA

(4)电压测量(MV)

量程±40V分辨率1.22mV精度±1% 读数值±20mV

量程±20V分辨率122uV 精度±0.5% 读数值±2mV

量程±10V分辨率12.2uV 精度±0.5% 读数值±200uV

量程±5V分辨率1.22uV 精度±0.5% 读数值±20uV

5. 2 、 数据采集部分 ( VM )

16位ADC,100K/S采样速率

(1)电压测量(MV)

量程±2000V分辨率30.5mV精度±0.5%读数值±200mV

量程±1000V分辨率15.3mV精度±0.2%读数值±20mV

量程±100V分辨率1.53mV精度±0.1%读数值±10mV

量程±10V分辨率153uV精度±0.1%读数值±5mV

量程±1V分辨率15.3uV精度±0.1%读数值±2mV

量程±0.1V分辨率1.53uV精度±0.2%读数值±2mV

(2)漏电流测量(MI)

量程±100mA分辨率30uA精度±0.2%读数值±100uA

量程±10mA分辨率3uA精度±0.1%读数值±3uA

量程±1mA分辨率300nA精度±0.1%读数值±300nA

量程±100uA分辨率30nA精度±0.1%读数值±100nA

量程±10uA分辨率3nA精度±0.1%读数值±20nA

量程±1uA 分辨率300pA精度±0.5%读数值±5nA

量程±100nA分辨率30pA精度±0.5%读数值±0.5nA

(3)电容容量测量(MC)

量程6nF分辨率10PF精度±5%读数值±50PF

量程60nF分辨率100PF精度±5%读数值±100PF

5. 3 、 高压源 ( HVS ) (基本)12位DAC

(1)加压(FV)

量程2000V/10mA分辨率30.5mV精度±0.5%设定值±500mV

量程200V/10mA分辨率30.5mV精度±0.2%设定值±50mV

量程40V/50mA分辨率30.5mV精度±0.1%设定值±5mV

(2)加流(FI):

量程10mA分辨率3.81uA 精度±0.5%设定值±10uA

量程2mA分辨率381nA精度±0.5%设定值±2uA

量程200uA分辨率38.1nA精度±0.5%设定值±200nA

量程20uA分辨率3.81nA精度±0.5%设定值±20nA

量程2uA分辨率381pA精度±0.5%设定值±20nA

DCT2000 半导体功率器件静态参数测试仪系统 能测很多电子元器件 ( 如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等 ) 产品广泛的应用在院所高校、封测厂、电子厂.....

半导体原子规则排列成点阵状态。其最小单元叫作晶包,对锗来讲是小四面体,即金刚石结构。电子在晶体中为晶包所公有,形成能带结构,如图4-1-1所示。下面的能带称为价带,又称满带,平时被电子填满。中间是禁带(又称能隙)。上面是导带,平时没有电子(又称空带)。在价带以下还有更低能量的价带;在导带以上还有更高能量的导带。如果令Eg代表禁带宽度,Eg(金属)< Eg< Eg(绝缘体)。中间是半导体。在T=0时,理想的半导体是无杂质的半导体,导带全空(无电子),价带全满,被电子充满,加上电压不导电,电阻率非常大。在T≠0时,热激发使价带电子跳到导带,电子都处在导带底层,空穴均处在价带上层,并且处于动平衡状态,激发的电子—空穴对数目等于复合电子—空穴对数目。这样的半导体叫作本征半导体。从能带模型看,产生电子—空穴对,破坏了一个原子的共价键,Eg就是该结合键的结合能:

式中 Ni——电子密度,与温度有关;Pi——空穴密度,与温度有关;K——波尔兹曼常数;T——绝对温度,°K;Eg——能隙(禁带宽度);N ( T )——表示跃迁到某一状态的状态函数。

本征半导体:晶格结构完整,没有缺陷,没有杂质,电阻率极大,电子充满价带,绝对零度不导电。

本征半导体Si或Ge,掺杂少量的三价或五价元素,便改变了半导体的电性能。如五价的P、As加入到Si或Ge,P、As置换了Ge晶格点阵的Ge原子。因是五价,四个电子与周围Ge组成四组共价键,第五个电子与As结合不紧密,在热激发下跳到导带,留下正电荷在点阵上形成正电中心,这种杂质称为施主杂质。

如果掺杂少量三价B、Ga元素,去置换Si或Ge原子,它要从周围的Ge原子拉过来一个电子,组成四对共价键,即原来价带的一个电子跳入Ga固定能级形成负电中心,在价带中留下一个空穴,这种杂质称为受主杂质。施主杂质As给出一个电子,它一般靠近导带,也称为浅层杂质,距禁带0.03~0.05eV。受主杂质Ga接受一个电子,它一般靠近满带,也称为深层杂质。

单晶本身浓度为1022原子/cm3,这是本征半导体。杂质浓度为109~1010原子/cm3,为高纯锗作半导体探测器;杂质浓度为1011~1012原子/cm3,为特种半导体,作特种器件;杂质浓度为1012~1013原子/cm3,为一般半导体,作晶体管。

半导体分为N型半导体、P型半导体。N型半导体的电子是多数载流子,空穴是少数载流子;P型半导体的电子是少数载流子,空穴是多数载流子。P型半导体与N型半导体结合在一起,接触面形成PN结。

1.载流子的寿命载流子寿命てe( h )越长越好,大约为300μs~1ms。对于一块完整的晶体,载流子迁移率与温度有关。当温度高时,晶格受热运动产生光学、声学振动,载流子在迁移过程中,可能发生碰撞而受阻力。反之亦然。载流子的迁移率μ与温度t关系曲线如图4-1-2所示。由于晶格点阵有空位,造成附近区点阵错乱,称为点缺陷;由于点阵错乱,引起点阵变形,称为线缺陷;面与面之间点阵错乱,即位错乱,引起的点阵畸变,称为面缺陷。由于上述三种缺陷产生了凸凹部分,使点阵的结合能发生改变,出现了能量的高低变化。能量低的地方被称为陷井。当载流子通过陷井时,把载流子陷进去,使载流子暂停一下,当得到适当机会后它再跃出。由于掺杂质后,施主杂质产生了正电荷中心,受主杂质产生了负电荷中心。有电荷中心就产生了库仑电场,当载流子经过库仑电场时,使其暂停一下,当得到适当机会,把它放出,这种电荷中心称为捕捉中心。当被电荷中心捕捉后,被进一步陷落于价带中,与价带中的一个空穴复合,使载流子消失,这种现象称为复合。载流子的寿命与陷井、捕捉、复合三种现象有很大关系。一般情况下,温度低迁移率大,载流子寿命长。电子—空穴对由产生到消失,所用时间称为载流子寿命:

式中 てe(h)——载流子寿命;μe(h)——载流子迁移率;λ——载流子的平均自由行程;?——受陷落截面;P——陷井密度。

对于厚度为1cm的耗尽层,由于载流子的损失,能量谱加宽0.1%。

2.载流子的平均自由行程在没有外界电场的情况下,电子—空穴对从产生到消失,所走的平均距离,称为载流子的平均自由行程。载流子的平均自由行程与陷井的密度、掺杂质的种类有关。陷井密度小,受陷落截面小,λ大。氧和铜在锗晶体中特别容易扩散。如果本征半导体在空气中暴露1min,就产生一个氧化层使表面造成破坏,导致漏电流增大。对于半导体,漏电流越小越好,漏电流与半导体制造工艺有很大关系。晶体表面清洁,漏电流就小,一般小于10-10A。

载流子的浓度随时间变化:

式中 N0exp——初始载流子密度;Nt——载流子随时间变化密度。

3.载流子的收集率当γ量子入射到本征区后,γ量子由于能量损失,便产生一定数量的电子—空穴对,在外界电场的作用下,被收集到阳极,产生电流脉冲,这种收集如果是完全的话,电流脉冲幅度达到极大值。收集载流子多少称为收集率。收集率大小与半导体制造工艺、材料、体积大小,本征区宽度有关;从本质上讲,还取决于载流子迁移率、迁移长度、复合效应、陷井、捕捉中心密度大小;另外还和外加电场强弱有关。

4.对半导体探测器的要求气体探测器:在电离室中产生一个电子—离子对,大约需要能量ε≈30eV;半导体探测器:在晶体中产生一个电子—空穴对,大约需要能量ε≈3eV;闪烁体探测器:在光电倍增管光阴极上,产生一个光电子,大约需要能量ε≈300eV。

半导体探测器产生一个电子—空穴对需要的能量ε越小,能量分辨率越高。产生一个电子—空穴对需要能量/γ光子损耗能量= 0.3~0.35,γ光子损耗的能量主要消耗于晶格的光学、声学振动中。

5.载流子的漂移速度原子在外加电场作用下,在晶体内产生区域电场,电场有固定指向,电子—空穴对沿电场漂移,漂移速度ve( h):

式中 μe(h)——电子一空穴对漂移率或漂移本领,也叫载流子迁移率。

在室温情况下,电子的漂移率μe=1300cm2/(V?s),空穴的漂移率μ(h)=500cm2/(V?s);在不同电场下,μe(h)不是常数,在1000~2000V/cm时,μe(h)达到极大值,为1×107~2×107cm2/(V?s)。

μe(h)是温度T的函数,温度为0时,μe(h)达到极大值,因为0时晶格无振动,电子—空穴对不受任何碰撞,运动无阻力。晶体的任何参杂和晶格的不完整性都会引起μe (h)的减小。

材料的电阻率表示为:

用式(4-1-4)计算的Pi与实际测得的Pi相差极大,因为在实际上没有真正无杂质的纯晶体。

电子密度Ni与温度关系较大,随温度变化快。Ni与μe(h)比较,μe(h)随温度变化较慢一些:

6.几种材料的禁带度

禁带宽度越宽,晶体的使用温度越高,0.66eV(低温)→1.45eV(室温)→2.8eV(高温)。锗原子序数为32,碘化钠原子序数为11、53,因此两个探测器探测效率相差不多。

7.Si和Ge的基本特性参数

8.产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35的原因γ量子入射到本征区,它并不是只与弗米表面起作用,还与满带下面能量更低的带起作用,交给满带能量,是随机性的。这样激发出来的电子,其能量有高、有低。这样一来,能量高的就可以跳到导带,还有的跳到更高导带上去。这时它是不稳定的,放出能量回到低能导带上;处在低能价带上的空穴也是不稳定的,它也要逐渐回到价带的最表层(空穴移动是通过上一层满带的电子来补偿的),同时空穴也将放出能量。电子与空穴放出的能量大部分交给晶格,能量低的产生光学振动,能量高一点的作声学振动,所以点阵总是处于一种振动状态,γ量子损耗的能量不是完全都用于产生电子—空穴对,而是一大部分用于产生各种点阵的振动。产生一个电子—空穴对需要的能量/γ量子损耗能量≈0.3~0.35。产生一个电子—空穴对损耗的能量比禁带宽度大好几倍。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9208049.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存