美国对华禁售半导体设备,我们该如何突破技术瓶颈?

美国对华禁售半导体设备,我们该如何突破技术瓶颈?,第1张

美国对华禁售半导体设备,我们该如何突破技术瓶颈首先是找一些发达国家的科技企业合作,其次是自己生产半导体,再者就是加强一些半导体的研究,另外就是吸收大量的半导体人才,需要从以下四方面来阐述分析美国对华禁售半导体设备,我们该如何突破技术瓶颈。

一、找一些发达国家的科技企业合作 

首先是找一些发达国家的科技企业合作 ,之所以需要找一些发达国家的科技企业合作就是为了满足我们国内对于半导体设备制造的需求,并且可以绕过美国科技企业来更好地实现一些战略合作的目的。

二、自己生产半导体 

其次就是自己生产半导体之所以需要自己生产半导体就是这样子可以使得自身获得更多的一个发展和进步,并且可以借助一些现有的科技手段来生产符合工业标准的半导体设备,这样子可以加速工业的发展。

三、加强一些半导体的研究 

再者就是加强一些半导体的研究 ,之所以需要加强一些半导体的研究就是这样子可以使得半导体的发展处于更前沿的状态,并且可以帮助我们国家实现更好地发展,这都是非常必要的手段

四、吸收大量的半导体人才 

另外就是吸收大量的半导体人才 之所以需要吸收大量的半导体人才就是这样子可以使得我们国家的发展处于一个更加稳定的状态,并且可以提供一些福利政策给到这些人才从而帮助国家更好的发展

中国应该做到的注意事项:

应该加强人才的吸收,这是可以使得国家的科研实力更加强大,这对于国家的长期发展而言都是非常有利的,并且可以更好地延伸多方面的发展。

9月16日-17日,中国电动 汽车 百人会在南京召开主题为"做强 汽车 三条链 实现 汽车 强国"的第二届全球新能源 汽车 供应链创新大会,比亚迪半导体有限公司相关负责人参会并发表主旨演讲。

在17日举行的"电动化供应链的未来机会"主题论坛上,比亚迪半导体着重分享了在新能源 汽车 领域的创新经验。在 汽车 电动化方面,以高效为核心,重点提升功率半导体效率,实现IGBT(绝缘栅双极晶体管)和 SiC(碳化硅)同步发展;在 汽车 智能化方面,以智能、集成为核心,重点提高MCU(微控制单元)智能程度,满足车规级高控制能力需求,开发多核MCU产品。

作为国内领先的半导体IDM企业,比亚迪半导体主要从事功率半导体、智能控制IC、智能传感器、光电半导体的设计、研发、制造及服务,产品广泛应用于 汽车 、工业、能源、通讯和消费电子等领域,持续为客户提供领先的车规级半导体整体解决方案,致力于成为高效、智能、集成的新型半导体供应商。

随着全球 汽车 产业进入深度转型期,以电动化、智能化为代表的新一代 汽车 正改变原有 汽车 制造业的供应链版图。虽然在动力电池、电机、电控方面,国内已拥有部分上规模的供应企业,但在芯片和电子元器件方面仍然严重依赖进口。公开数据显示,中国功率半导体市场占全球份额超过40%,但自给率仅10%;中国车规级MCU市场占全球份额超过30%,但却基本100%依赖于进口。

2002年,比亚迪开始进入半导体领域。在车规级功率半导体方面,比亚迪半导体拥有十余年的技术积累,不断更新迭代。2005年,比亚迪组建团队,开始研发IGBT;2009年推出国内首款自主研发IGBT芯片,打破国外企业的技术垄断;2018年推出IGBT 4.0芯片,成为国内中高端IGBT功率芯片新标杆;2020年推出国内首款批量装车的SiC MOSFET,已应用于比亚迪全新旗舰豪华轿车"汉"车型。

MCU作为 汽车 电子系统内部运算和处理的核心,是实现 汽车 智能化的关键。2007年,比亚迪进入工业MCU领域,坚持性能与可靠性双重路线,工作温度-40℃~125℃,静电能力大于±8KV,累计出货突破20亿只,失效率小于10ppm。

结合多年工业级MCU的技术和制造实力,比亚迪半导体实现了从工业级MCU到车规级MCU的高难度跨级别业务延伸。2018年成功推出第一代8位车规级MCU芯片,2019年推出第一代32位车规级MCU芯片,累计装车超500万只,实现国产化零突破。未来还将推出应用范围更加广泛、技术领先的多核高性能MCU芯片。

比亚迪半导体将持续致力于利用整车制造优势,打破国产车规级半导体下游的应用瓶颈,实现产品基本覆盖车规级半导体核心系统应用,与业内同行合作共赢,携手助力新能源 汽车 行业高质量发展。

适用了20余年的摩尔定律近年逐渐有了失灵的迹象。从芯片的制造来看,7nm就是硅材料芯片的物理极限。不过据外媒报道,劳伦斯伯克利国家实验室的一个团队打破了物理极限,采用碳纳米管复合材料将现有最精尖的晶体管制程从14nm缩减到了1nm。那么,为何说7nm就是硅材料芯片的物理极限。

 芯片的制造工艺常常用90nm、65nm、40nm、28nm、22nm、14nm来表示,比如Intel最新的六代酷睿系列CPU就采用Intel自家的14nm制造工艺。现在的CPU内集成了以亿为单位的晶体管,这种晶体管由源极、漏极和位于他们之间的栅极所组成,电流从源极流入漏极,栅极则起到控制电流通断的作用。

而所谓的XX nm其实指的是,CPU的上形成的互补氧化物金属半导体场效应晶体管栅极的宽度,也被称为栅长。

栅长越短,则可以在相同尺寸的硅片上集成更多的晶体管——Intel曾经宣称将栅长从130nm减小到90nm时,晶体管所占得面积将减小一半;在芯片晶体管集成度相当的情况下,使用更先进的制造工艺,芯片的面积和功耗就越小,成本也越低。

栅长可以分为光刻栅长和实际栅长,光刻栅长则是由光刻技术所决定的。 由于在光刻中光存在衍射现象以及芯片制造中还要经历离子注入、蚀刻、等离子冲洗、热处理等步骤,因此会导致光刻栅长和实际栅长不一致的情况。另外,同样的制程工艺下,实际栅长也会不一样,比如虽然三星也推出了14nm制程工艺的芯片,但其芯片的实际栅长和Intel的14nm制程芯片的实际栅长依然有一定差距。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9208632.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存