首先,激光的英文叫Laser light amplification by stimulated emission of radiation.就是通过受激发射实现光放大.
光通过谐振腔的选模作用和增益介质的放大作用,经过震荡和放大,实现拥有单色性、准直性、相干性非常好的光束,这个就是激光.
激光器有很多种类型,但他的必要组成部分无外乎:谐振腔、增益介质、泵浦源.
形成激光的一个重要条件是,粒子数反转,就是导带的粒子数密度大于价带(半导体)或高能级的粒子数密度大于低能级(气体或固体),激光的现象就是在这样一种偏离了平衡态的稳态.
半导体激光器比起固体激光器和气体激光器,结构上还是有很大区别的.半导体激光器一般是三层或多层异质结结构,这样由于折射率的的内大外小自然构成了光约束,又由于异质结结构形成的量子井结构(最早的半导体激光器不是量子井结构的,随着MBE的半导体加工技术的应用,单井和多井结构得以实现),对载流子形成了约束,使受激发射大都发生在增益介质的带边,这样就大大提高了激光器的效率.半导体激光器是电泵浦的,不同于气体激光器或固体激光器的光泵浦.
半导体激光器的工作过程是这样的,由于外加电场的作用,载流子开始移动,由于量子井的存在,载流子开始在量子井中堆积,然后一部分导带的电子会自发跃迁回价带放出一个能量等于带隙宽度(band gap)的光子,这个过程叫自发发射,一部分自发发射的光子会被吸收,再放出两个光子,这个过程叫受激发射,这样自发发射的光子成为了最初的泵浦光,然后不断的发生受激发射,受激发射的光子会在增益介质中不断震荡,不断的使更多的光子受激发射出来,当外加电场强度达到粒子数反转所需强度之后一段时间,便会有稳定的激光输出了.
————————
这个过程当中有很多很多细节问题,不明白可以问我.
莫特密度国际上规定半导体从绝缘体变成导体,光学增益第一次出现的点。莫特跃迁现象中实现莫特转换和密度所需的电力远远超过了未来高效计算机所需要的电力,所以这就需要一种新的低功耗纳米激光器来实现,如果没有研究团队研究这种新低功耗纳米激光器,那么将在未来一台超级计算机将需要一个小发电站来供应电力,所以电力功耗非常之巨大。 我们必须要研制出一种能够实现低功耗的机器,莫特跃迁以下的激子复合物就实现了光学增益,那么功率的输入将会显而易见的变低。强烈的电荷相互作用,使得其激子与三电子即使在室温下也非常的稳定,而如何实现光学增益来降低这种功率消耗?研究人员可以 探索 电子,空穴,激子和三电子的平衡,并且控制它们之间的相互转换,并且在非常低的密度水平就能够实现光学增益。而莫特跃迁现象刚好适用于光学增益,研究人员就可以利用莫特跃迁铅现象来实现低功率的二维半导体纳米激光器制造,由于不确定的纳米激光器的机制,所以在解决莫特跃迁现象仍有许多问题有待解决。在90年代外国人也做过类似的实验,但是激子和三电子非常的不稳定,在实验中无法观察到光学增益,所以就失败了。纳米激光器的制造有赖于这种新的光学增益机制,也就是这种莫特跃迁现象。该研究还停留在物理基础的工作当中,研究人员未来还有许多工作要做。在未来的 社会 当中,光学增益可能会被应用到新的纳米激光器,这样就能够改变超级计算和数据中心的未来。计算机的未来是将激光和电磁设备集结在一个单一的集成电路平台当中,即超级计算机。能够在一块芯片当中发挥巨大的作用,所以在未来将莫特跃迁现象应用到实际当中还有待突破。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)