线性关系
,称之为
非线性元件
。
半导体电流、电压呈e指数的变化关系。
气态导体比较复杂。
不可以用u/i计算,只能用求导数的方法计算。
(一)按照形态
电介质以形态来分可以分成气体,液体和固体三大类。
空气就是一种电介质,在通常情况下都是以空气力介质的,比如常见的空气开关。
液体介质常见的有介质油,主要用在油开关中。该种油的作用不但起绝缘的作用,还起着灭弧作用。还有变压器中所灌注的油。
固体介质更多了,比如:云母,电木,塑料,橡胶等等。这类介质的主要作用是隔离绝缘。
(二)按照性能
众所周知,按电性能对物质进行分类时,通常可分为绝缘体、半导体与导体,当然还有超导体。一般非专业人士很少能想到与半导体同等重要的电介质,也有不少人误以为电介质即等同于绝缘体。因此,有必要着眼于其基本物理特性及其根源、正确理解电介质。
电介质是以极化方式传递、储存或记录外电场作用和影响的物质就是电介质。显然,电介质中起主要作用的乃是是束缚电荷而非自由电荷。
极化可以来自极性晶体或分子的自发极化、也可以来自电场的诱导作用。
电介质的介电响应规律以及相对介电常数、介电损耗等宏观物理性能均能取决于其微光极化机制。电介质的微观极化机制主要有:电子极化、离子极化、取向极化以及空间电荷极化。根据介电响应规律的不同,电介质可分为线性电介质与非线性电介质两大类。前者之电位移与电场呈线性关系,称为顺电体,后者之电位移与电场呈非线性,包括铁电体与反铁电体等。
对于非中心对称的晶体,应力可以导致其极化程度的改变,反之电场的作用可导致机械应力或机械振动。这种效应分别称为正压电效应与逆压电效应,而相应的物质称为压电体。此外,对于非中心对称的极性晶体,温度的变化可以导致其自发极化强度的改变,这种效应称为热释电效应,相应的物质称为热释电体。
上述电介质为我们提供了丰富多彩的电子元器件,从而构筑了现代电子与信息技术的支柱之一。电容器、谐振器、滤波器、铁电存储器、起爆器、换能器、压电变压器、声纳、超声振子、速度与加速传感器、红外传感器、微波移相器等众多电子元件,无不依赖各种电介质材料、无不立足于材料不同的极化特性之应用。
光电子器件主要有作为信息载体的光源、辐射探测器、控制与处理用元件器件、光学纤维、显示显像器件。
作为信息载体的光源 热辐射的过程是很难进行快速控制的,但可以对它发出的光束加以调制、滤波或其他处理,使光束在传播途中带上信息。热辐射以外的发光光源自然也可以在传播过程中带上信息,但更主要的是在发射过程中就带上信息。通常,采用低压即可驱动的半导体PN结发光二极管,尤其是高亮度半导体发光二极管和半导体激光器。它们具有反应快、易调制、体积小和光强大等优点。激光具有良好的单色性、相干性、方向性和高光强,这些性能有利于光通信和其他应用。 即光-电和光-光转换器,分为利用光电效应的和热效应的两类。
①光电效应:分为外光电效应和内光电效应。外光电效应就是光电子发射效应,利用这种效应的器件都是真空电子器件。例如,光电倍增管,其光电阴极能将光信号转换成一维(时间)电子信号,经多次次级发射,电子倍增电极把信号增强后从阳极输出。这种器件的灵敏度高,甚至可用它组成光子计数器,用以探测单个光子。已研制成二维(空间)光子计数器,用以检测极微弱的光信息。又如像增强管,将 X射线或紫外线转换成光电阴极敏感的光,或采用对红外线灵敏的光电阴极,它使成像光电阴极上的光图像发射出相应的光电子,这些光电子经加速并成像后轰击荧光屏,输出可见光,发出更亮的光图像。它是一种光-光转换器件。这就是 X射线或紫外线像增强管和红外变像管的工作原理。这种器件能起扩展人眼对电磁波波段敏感范围的作用。利用内光电效应的器件,都是半导体器件。其主要原理是光电导和光生电动势两种效应。光电导型探测器由单一半导体制成,或制成二极管,称为半导体光电二极管。受光照时,其电阻发生变化。其中光电二极管通常在反向偏压条件下工作。如果反向偏压足够高,载流子通过PN结的电流直接反映出单位时间内探测器所接收的光能。光电二极管也可在不加偏压的条件下工作。这时,辐射的照射将使PN结的两端产生电动势,其短路电流正比于所接受的辐射功率。红外热成像系统的探测器通常是光电导型。常用的有碲镉汞、碲锡铅、锗掺汞探测器等。它们都必须在低温下工作,以降低探测器的热噪声。
②热效应:利用热效应的探测器通称为热敏型探测器,主要是利用物体因受辐射照射后温度升高所引起的电阻的改变、温差电动势的产生、自发极化的改变等效应来测量辐射功率。这类探测器都用在红外波段,优点是响应率与波长无关,在室温下也能探测长波辐射等,但响应时间比光电型探测器长得多。 光的主要特征有强度、光谱、偏振、发光时间和相干性等。光束在传播中,则有方向性、发散或会聚等特征。控制元件的功能在于改变光的这些特征。为了使光束偏转、聚焦和准直等,常使用反射镜、透镜、棱镜和光束分离器等。反射镜常使用金属膜或介质膜,后者的反射系数高并具有选择性。利用全反射可制成反射镜,用于倒像、转像、分束和全反射等。为改变光束的其他特征,常用的元件有滤光片、棱镜、光栅、偏振片、斩光器、受电场控制的电光晶体和液晶等。
电光开关不仅可以改变光强和偏振,还可控制光通过的持续时间,是广泛应用的一种器件。其结构是在相互正交的两块偏振片之间放进一块双折射晶体,在晶体上加一电场,则通过晶体的光偏振方向将发生旋转,转角的大小决定于电场的强度。因此,调节电场的强度就可以改变透射光的强度;改变电场的作用时间则可调制光的持续时间。
利用声波对光的衍射效应,可控制光束的频率、光强和传播方向。在接近布喇格衍射的条件下,声光的相互作用使光束偏转。声频改变时,偏转角也相应地按比例变化。在衍射效应较小时,衍射光的强度与声波的强度成正比。利用信息调制声波的强度,就可以通过这种比例关系调制衍射光的强度。这种控制方法已在光的传播、显示和信息处理方面得到广泛应用。
在光数字处理系统中,关键是研制光学晶体管或光学双稳态器件。已研制出的光学双稳态器件,大体上可分为两类:本征型或称全光学型和光电混合型。一般地说,这种器件由非线性介质、反馈系统和光源三部分组成。可以把出射光强的高态和低态,相应地视为“开”和“关”状态。光晶体管可进行光放大、调制、限幅和整形,并可构成光逻辑门。
光存储器包括光盘和全息超微存储底片等,可用于光录像电视和大容量信息存储,也可用于图书资料存储。 用于产生光模拟信号、数字符号和光图像,分为真空器件和非真空器件两大类。前者包括电子束管、低压荧光管和白炽灯泡等;后者包括发光二极管、场致发光屏、等离子体和液晶显示器件等。除液晶显示需要环境照明属于被动显示外,其他都可以发光,属于主动显示。显示方式有两种:①用线段组合成需要显示的数字、符号或图案。例如,用七画拼成各个数字和符号。计算器、数字表等所用的发光二极管或液晶显示器大都采用这种方式。②在多元列阵中选择一部分位置合适的单元组成所需的字符或图案,单元可采用白炽灯、发光二极管、场致发光屏和液晶等。这是一种没有灰度级的矩阵交叉屏。
在显像技术中,广泛应用黑白和彩色电视显像管。显像管利用扫描电子束轰击荧光屏产生黑白或彩色画面。前面提到的光-光转换器件如像增强器和变像管,也是显像器件。此外,也可采用有亮度等级的多元列阵,如在固体平板显示或显像屏中,利用两组相互正交的电极。当其中正交的两个电极的交叉点上加有足够高的电位差时,就形成发光点。它是一个像元,很多明暗不同的像元组成一张图片。利用这种结构已制成场致发光屏、液晶屏和等离子体显示屏等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)