最近芯片、光刻机成为了俄罗斯不能说不担心芯片和光刻机的问题,只是他们现在根本还有必要 *** 心这件事,而这一切和俄罗斯(前苏联)的近50年发展所导致的。为什么这么说呢?
苏联的半导体行业许多历史课的教材通常会把历史分成政治、经济、文化三大模块来进行学习。历史课跨度很长,基本上是从文明起源一直到近代。在这么长的时间跨度内,这三个要素是影响人类历史进程最关键的要素。
最近三百年来的历史,有个因素逐渐扮演了越来越重要的地位,到近代,它甚至开始影响着整个世界格局,这个重要因素就是:科技。而芯片和光刻机其实就是影响当下人类文明进程的最重要的科学技术。
不过,芯片和光刻机的历史其实并不久远,一直到上世纪50年代末,60年代初才出现。当时正好是美苏冷战,美国和苏联是当时的超级大国,双方在各个领域展开了较量。
这些竞赛就包括了各个方面的科技竞赛,最为我们所熟知的就是双方在航天领域的较量,在一开始是苏联占据了领先优势,加加林率先登上了太空。后来,双方又开始比赛登月。在登月方面,美国的阿波罗11号率先实现了载人登月。
虽然苏联在登月上败给了美国,但并不影响它超级大国的地位。在这些竞赛中,双方也在不断迭代自己的科学技术。在芯片未出现之前,晶体管和电子管其实没有太大区别,晶体管就是后来芯片的核心元器件。
苏联当时主要使用的就是电子管技术,而不是晶体管。之所以这么选真的不怪苏联,因为当时主要考虑的是核战争。核战争的环境中,一般会有大量的电磁脉冲,晶体管是没有办法抵御电磁脉冲的,会直接失灵,而电子管几乎不会受到什么干扰。
所以,从那个时代的角度来看,选择电子管并没有什么问题。除了不看好晶体管,苏联当时所使用的计算机也和其他地方是不同的,他们采用的不是二进制,而是三进制。苏联的科学家还制造除了人类史上第一批采用三进制的计算机:Сетунь和Сетунь 70。只不过当时的苏联体制中充满了官僚主义,当时苏联相关的负责人并不认为这些计算机可以有什么用处。明明有许多订单,他们却选择不做,并勒令停止生产。
总结一下就是他们不看好晶体管,同时因为体制的原因,导致许多创新被埋没。
西方各国家却相反,他们十分看好晶体管,开始在这个领域大规模的投入。西方国家整个半导体产业在70~80年代疯狂生长,在当时,美国的硅谷就是涌现出一大批相关产业的大牛,比如:摩尔。著名的摩尔定律就是他提出来的。
反观苏联则是原地踏步,开始吃老本,它们的半导体产业一直在走下坡路。一路走下坡路的不仅仅是苏联的半导体产业,还有苏联的经济和政治体制。最终,苏联在1991年解体。从超级强国的位置上跌落下来。同时苏联的半导体行业也遭受了前所未有的冲击,许多产业链分散在解体后的不同国家当中。
时至今日,俄罗斯99%以上的芯片都是依靠进口,只有极其小的一部分是自己研制的,主要是用于航天领域。因此,俄罗斯在这个领域几乎可以算作是空白,也就没有必要担心这个问题。
而中国的半导体行业在近几十年,军工领域的芯片已经有相当一部分是自研的,这种自研程度要远远高于俄罗斯。
芯片为什么这么重要?正如前文所说的,芯片其实是近代最重要的科技。由于芯片所引领的是产业链和标准。因此,掌握了芯片技术,就可以实现垄断,并从中获取暴利。西方国家从芯片行业获取到了大量的甜头。芯片的用处很多,它需要用到方方面面的领域,无论是军工的,还是民用的。如果一个国家因为某些政治因素不能够进口芯片,那么这个国家的许多行业都会受到冲击。
西方国家也不希望其他国家能够发展出整套的芯片产业链。尤其对于美国而言更是如此。美国本质上是一个海洋国家。这是因为它南北的国家都屈服于它,东西两边都是大海。这和200多年前的英国类似。英国在那个时期,就非常善于平衡之术,牢牢掌握着整个欧洲的局势,不让任何一个国家发展壮大。如今的美国和之前的英国是一个套路。也是尽量在遏制任何一个国家的崛起,它手里有五张牌:军事、贸易、文化、金融、科技。
许多发达国家都被这几张牌压制得死死的,比如:德国,日本。在近几十年,凡是有崛起势头的国家和企业都受到过美国的打击,日本就是最典型的例子。法国的企业阿尔斯通就曾被美国“肢解”。
美国的5张牌中,只有科技这一张牌对我们杀伤力最大。因此,对于我们而言,继续加强自研的程度,完善整个半导体的产业链,甚至是研发出自己的一套半导体标准才是硬道理。
昔日,苏联 科技 实力用强大这个词来形容一点不夸张,至于为何没有孕育出英特尔、AMD这样的微处理器产业(半导体厂商)?实际上是由多个因素共同造成的。先说苏联
当年,在美苏冷战初期,苏联在太空竞赛中处于领先位置。可是,苏联在选择电子技术发展方向上,在很长的一段时间里,对相对老旧的电子管技术是情有独钟,而非着眼于更先进的晶体管及集成电路(芯片)技术。而且,苏联曾一直想方设法让电子管变得更小型化以提升自己的电子技术水平。
第二次世界大战结束之后,电子行业一度是被苏联当作军用高 科技 技术行业。苏联不仅十分重视自己的电子行业,还对该行业进行严格管理。与此同时,苏联为了让自己的军用武器装备更加简单、可靠、成熟和易生产,觉得电子管技术很成熟,利用该技术容易研制出大功率电子元件。干脆集中主要的精力于电子管小型化的研究方向上。另外,苏联技术专家们在对模拟电路与数字电路作选择的过程中,分析认为模拟电路更成熟,更适用于电子管,便大力发展以运算放大器为核心的模拟电路。
苏联选择电子管技术,苏联领导人赫鲁晓夫都对此持支持的态度。有媒体引用赫鲁晓夫说出的一句原话:“真空电子管在核电磁脉冲下的生存性能比强过晶体管,今后苏联就不要搞什么晶体管了,我们要集中主要的力量搞电子管小型化。”在那个年代,结合苏联当时的体制,赫鲁晓夫这番话,等同于是给晶体管技术判了个死刑。
之后是到20世纪70年代中期,苏联有些工程技术人员终于意识到,真空电子管小型化这条路基本走到头了,如若要让真空管体积再缩小一个数量级,所需费用必然是个天文数字。美国等西方国家研制出的集成电路,已能在0.5平方厘米的硅晶圆片上集成14万个晶体管了。苏联耗费大量人力、物力和财力,用差不多10年的时间向世人们证明了一个真理,电子管小型化最终根本比不过晶体管集成电路。甚至有人还从中得出一个推论,苏联在 科技 发展战略上出错,也是导致苏联在冷战中逐渐落于下风的原因之一。
后来,在全球范围内,美国在集成电路芯片行业处于领先地位,进而抢得信息技术革命的先机,在军、民电子技术行业把苏联远远甩在后面,且依靠信息技术产业创造出旺盛的市场需求。美国产业结构由此成功升级换代。苏联错失了在信息技术行业的领先优势,自身产业升级换代缺少相应的技术支撑,以至在全球成为一个油气等资源输出大国。
不过,也人提出了与前面不完全相同的观点,即当初苏联并非完全不重视晶体管技术。比如,1950年苏联研发出第一个晶体管,1953年苏联研发出第一台带有晶体管的作为部分元件的大型计算机,1957年苏联研制出第一个硅晶体管,1961年苏联研发出全晶体管的大型计算机。再比如,当时苏联在半导体领域中的理论研究水平其实是相当高的,甚至在某些电子元件设计上,还有着很深的基础和造诣。
后说美国
美国在集成电路行业占据领先地位,除了早年美国对本土半导体集成电路产业给予大力扶持,以及有着市场化(竞争)大环境、产业链支撑等外,美国本身还有过一些了不起的集成电路技术人才。“晶体管之父”威廉·肖克利生于英国,从3岁起在美国生活、读书、工作、创业。“集成电路之父”杰克·基尔比生于长于美国,曾在德州仪器工作过。英特尔共同创始人之一罗伯特·诺伊斯同样生于长于美国,在业界可谓是个传奇人物……
1955年,威廉·肖克利离开贝尔实验室,返回故乡硅谷圣克拉拉创业,并在当地创建“肖克利半导体实验室”。次年,罗伯特·诺伊斯、戈登·摩尔、布兰克、克莱尔、赫尔尼、拉斯特、罗伯茨和格里尼克,这八位年龄均不过30岁的青年科学家,因仰慕威廉·肖克利的大名,相继从美国东部来到硅谷,追随威廉·肖克利以共创事业。后来,这八位青年才俊选择与威廉·肖克利分道扬镳。于1957年共同在硅谷创立仙童半导体。威廉·肖克利称这八个人为“八叛逆”,后又改口称他们“八个天才的叛逆”。
引述网络上一段文字:“仙童半导体曾是世界上最大、最具创新精神和最令人振奋的半导体企业,为硅谷的成长奠定了坚实的基础。更重要的是,这家公司还为硅谷孕育了成千上万的技术人才和管理人才,是电子、电脑业界的‘西点军校’。曾有一批又一批的精英人才从这家公司走出,书写了硅谷一段辉煌的 历史 。”
到1967年,仙童半导体的年营业额达到2亿美元,在那时可谓是个天文数字。据一位曾经进入过仙童半导体的华裔博士亲口所述,“一旦你进入仙童半导体,就等于进入了硅谷半导体工业的大门”。也就是在这个时期,仙童半导体的危机逐渐显现。“八叛逆”中的克莱尔、赫尔尼、罗伯茨首先离开仙童半导体创业。之后格拉斯也带着几个人出走仙童半导体创业。1968年,“八叛逆”中最后两位,即罗伯特·诺伊斯、戈登·摩尔,带着格鲁夫脱离仙童半导体,共同在硅谷创立英特尔。另外,杰瑞·桑德斯带着七人从仙童半导体出来后,于1969年在硅谷共同创办了AMD。至于后来英特尔、AMD在集成电路行业中的发展史,在此略过。
综上可得:美国能够孕育出英特尔、AMD等微处理器厂商,应该是与美国有着市场化的环境、勇于创新的人才精英和配套的产业体系是分不开的。
有部电影,斯大林之死,斯大林病重的时候,满城找不到医生,全在监狱里。苏联有最牛逼的武器,因为这是统治集团的需求,老百姓的需求呢?面包店都是空的。美帝牛逼之处,打球最好的黑人在NBA,挣钱有道的犹太人在华尔街,最适合当码农的印度人在硅谷,能说到做到的脱口秀明星商人进了白宫。
当你说到英特尔和AMD的时候,你有没有关注过,美国的企业诸如苹果,微软那些崛起的主要年份,上世纪80年代,而在上世纪80年代后,直到90年代进入克林顿时代,美国的 科技 在基因组图和信息高速公路上出现了大跨越。这些跨越是如此的集中以至于这里面肯定存在某种触发因素,那么这个触发因素是什么呢?老生常谈的一个法案,拜杜法案。
《拜杜法案》由美国国会参议员Birch Bayh和Robert Dole提出,1980年由国会通过,1984年又进行了修改。美国专利法第18章,在拜杜法案之前,所有的政府资助科研项目所有权为政府所有,在拜杜法案之后,政府的大量积压专利向私人部门转移,实质上拜杜法案打通了一条非常重要的专利之路,也就是专利的商业化道路,这里面也同时盘活了大量美国院校的专利技术。
我们知道专利权保护实质上是通过一段时间的垄断来奖励研发行为,这使得研发出现了超额的投入,我们也获得了很多未来的 科技 ,但是在研发上面很明显是讲求一种投入产出比,一些领域本来个人投入激情不足,比如登月,私人在一开始就没有这种需求,所以这方面的科研是政府在开始的时候推动的。但是这部分专利虽然研发出来了,但是没有人去考虑运用于民用产品。所以一直以来各国都在想办法用激励的方式盘活这些专利,美国的拜杜法案从结果看是做到了。如今美国很多的初创企业来自于大学校园,大量的专利通过利用校园的设施获得,继而通过校园专门设立的专利商业化机构对外进行销售,无论是占用公司股份的形式,还是直接买断的方式,交由市场去开发专利,继而校园获得更多的资金,去搞更多的研发。
为什么苏联没有出现芯片公司,实际上大量的技术是通过技术积累来实现的,芯片也是如此,要多层次的研究基础,并非信手拈来。而苏联时期知识产权是否可以实现私有呢?这个问题基本上就不用我们回答了吧,那个是计划经济,一定层面上专利法都不存在,所以研发结果都是目标性的,而且是国有的,也并不考虑市场的需求。即使苏联对于研发的科学家也是激励的,有奖励的,但是这些技术依然是不实用的,很多的技术就躺在了那里,而没有被商业化开发,成为制造利润的工具。
这就像当年读书,有兴趣的学科你总能学很好,没兴趣的学科老师天天让你留到十点你还是学不好,因为兴趣实质上是因为做好的事情能够自我激励。在激励这一点上面,很明显,美国的效率比苏联高很多。到了俄罗斯时代,不但是国力上和美国拉开了差距, 科技 上面的差距也很庞大,这个差距在早年的苏联时代已经奠定。
借鉴苏联的经验教训,决策不要偏听偏信,不要盲目拒绝新兴 科技 ,决策要有前瞻性,要有足够的超前意识。所以,中国在轮轨高铁发展建设应用规模鼎盛的时候也不要肓目自大地认为唯有轮轨高铁才是最牛、才是最靠谱,而放缓对常压高速磁悬浮列车技术和真空管道磁悬浮列车技术的研究和实例化开发应用。很多人都对研究真空管道超高速列车不报有希望和信心。决策层和科研领域理应比普通百姓网民更加清醒和冷静,要坚定不移地紧跟世界高端和前瞻技术,而不能坐等人成之后才觉得靠谱再去追赶,等到别人真正实现应用的时候你才觉得靠谱再去追赶那就晚啦,所以中国常压高速磁悬浮列车和真空管道超高速飞车的研发一刻也不能停,千万不要受网络噪音的干扰和影响而放慢研发和实例化的脚步!
前苏联作为二战之后唯一能和美国抗衡的超级大国,虽然综合国力相比美国一直处于劣势,但是在 科技 ,军事等方面,可以说是不遑多让的。然而,美国诞生了全球知名的客运飞机制造商,全球顶级的 汽车 制造商以及领先于世界的信息技术巨头企业等等令人羡艳的所谓“高端产业”,前苏联在这方面却是乏善可陈。因此,时不时就会有人问:“为什么苏联的XX技术那么强大,却没有诞生世界一流的XX产业?”
前苏联没有出现英特尔和AMD并不是一个孤立的事件,要放在这样的大背景下去解读。从某种意义上,前苏联先进的技术没有转化成相应的产业,也是前苏联在冷战中失败,最终解体的原因之一。
虽然说造成前苏联在信息技术产业落后的原因很多。比如说技术路线的选择,市场的容量等等方面都会有影响。但是,有一点很重要,就是 前苏联的国家思维 。
冷战时期,前苏联的科研技术实力是非常强大的,但是,前苏联的一门心思跟美国搞对抗,国内建设没有跟上。 我们国家近些年一直在提倡“扩大内需”,说白了就是要提高民众收入,老百姓有了钱才能消费,反过来促进市场的发展和国家的繁荣。这种想法,和美国的策略是极为相似的。通过军民结合,互相促进,既提高老百姓生活,也增强国家实力。国家的投入可以有更多的产出,是一种投资行为。 相对而言,前苏联的太多的精力用于军事实力的提高,大国力量的展示等方面。国家的很多投入,单纯变成了消耗甚至浪费。此消彼长,实力差距必然不断扩大。 尽管前苏联在某一段时期内,通过非常手段缩小了跟美国的差距,最终却是不得不败下阵来。这种过于强调对抗,试图打败对手而不是壮大自己来确保霸主地位的思维,是冷战思维的重要精神内核。
除此之外,前苏联实行的计划经济,相比于市场经济,本身就不利于产业发展,这也是导致前苏联的强大技术难以转化为先进产业的重要原因。 不过,计划经济本身就是前苏联国家思维的导致的一种结果呈现。因此,归根到底是国家思维,或者说是国家发展方针的问题。
前苏联的重工业,尤其是军工产业是很发达的,但却没能转化为民用产业,庞大的军费开支成了严重的负担。而美国人的做法就要精明很多,他们把军用技术中有经济利用价值的部分,积极做民用产业化的尝试。 以全球定位系统(以及由此发展出来的卫星导航系统)为例,美国的GPS成功推广到了全世界,而前苏联/俄罗斯与之类似的格洛纳斯(GLONASS)则几乎只剩下了军用价值。
美国虽然“免费”让全世界人民使用GPS,但是发展依托GPS诞生的产业链,美国人具备了先天优势。除此之外,由此带来国家形象的提升,远远比登月之类的大事件更为深入人心。 美国人发展全球定位/导航系统,的确花了不少钱,但是回报惊人。相比之下,前苏联的和其继承者俄罗斯的格格纳斯,回报则要小得多。同样的故事,也发生在其他的各个领域当中。
美国的技术研发投入很大,同时也在努力追求把部分技术民用,让科研成果变成经济产出的动力,从而有能力不断扩大投入。 前苏联的技术研究投入巨大,产出较小,没有形成良好的发展模式。因此,虽然凭借国家意志的强力驱使,前苏联在国家层面(尤其是军事实力)可以跟美国分庭抗礼。但是举全国之力发展重点项目,必然导致其他产业发展乏力。因此,军工产业极度发达和民用产业停滞不前并不矛盾,反而关联紧密。这个时候再去思考为什么前苏联没有出现大飞机产业,没有出现英特尔这类微处理器巨头就不难理解了。因为,所有的精力主要都投入军工产业了,自然没有足够的能力把民用产业做好。
为什么苏联没出现英特尔AMD这样的微处理器产业公司,其实原因多了,个人觉得主要有以下几方面:一是体制问题,原苏联实行计划经济体制,限制了人的思维和创造力;二是科研重心问题,原苏联成天都想着称霸,注重发展那些看着高大上的飞机大炮;三是国民思维问题,当然这也是由传统文化和教育所导致,比如美国电影中科幻片占很大比重!
和体制有关,也和土壤有关,苏联的 社会 制度让人为了国家去努力,去为了 社会 大义去拼搏,忽略了人性。太极端了。美国自由的很,所以自由的国度脑子灵活,跳跃。说个栗子。
UNIX *** 作系统,是今天Linux祖先,也是安卓和iOS的原始祖先。今天大型服务器很多在用的。可这个东东的诞生却是两位发明人最早为了玩 游戏 搞的,而为了玩 游戏 ,还开发了个语言,用这语言搞了系统,最后,就是为了玩 游戏 ,就是闲的蛋疼两人。具体故事更有意思,公家的闲置电脑,为了鼓捣 游戏 ,最后弄出了了不起的事。
这样的故事在苏联不可能诞生,这是典型的不务正业,典型的懒撒行为。要是被纪律部门发现,会要挨批斗,会要做检讨,开除d籍的。但美国现实中,这两人开创了未来成为佳话。
我们现实的问题也不过如此,什么事都要靠国家意志,集中力量干大事。可忽略了什么呢
不要轻信那些所谓的体制之类的谎话。苏联好东西太多了,但是西方国家把那些发扬光大了。理论上西方国家要给苏联不菲的专利费用,但是,苏联解体了;苏联当局不认可那些专利!
说实在话,苏联的专利可以养活至少两个俄罗斯!
比如手机,比如百事可乐,比如个人电脑,比如萨马兰奇
苏联不仅没有这样的信息企业,人们甚至都不大知道苏联有过什么著名企业。苏联存在的就是“国营石油公司”,“国营钢铁公司”之类。半是企业半是政府机构。初期可以集 社会 资源集中发展一下,后期就陷入官僚体制的僵化之中。
如果单算产能,苏联这些国营企业会达到世界前例。比如苏联航空公司是当时世界上运输里程最大的公司,比泛美之类大得多。但它根本不是一家真正的企业,而是国家机构。
苏联也创办过国营半导体公司之类。但因为都不是独立的企业,随着苏联解体,这些国家机构就都不存在了,其资产被寡头们分拆购买。
因为美国一直在进步,所以才会出现这样的产业。而苏联给人的感觉是表面强国,实际上一直在吃老本,一直在退步,以前沙俄的时候。可以说是名人辈出,不管是科学上的门捷列夫,还是文学上的托尔斯泰,屠格涅夫,陀思妥耶夫斯基,都豪不逊色西欧。军事上平平无奇的威灵顿,随随便便就打败了拿破仑。后来苏联之后就没什么人物了,所有的世界名人都是政治的产物。而CPU这种东西完全是 科技 上的东西,美国不知道在基础工作上投入的多少的人力物力时间才发展出来的。不是苏联领导人吼两声就能做出来的简单功利化产物。
半导体的应用, 半导体有哪些常见的应用半导体一般指矽晶体,它的导电性介于导体和绝缘体之间。
半导体是指导电能力介于金属和绝缘体之间的固体材料。按内部电子结构区分,半导体与绝缘体相似,它们所含的价电子数恰好能填满价带,并由禁带和上面的导带隔开。半导体与绝缘体的区别是禁带较窄,在2~3电子伏以下。
典型的半导体是以共价键结合为主的,比如晶体矽和锗。半导体靠导带中的电子或价带中的空穴导电。它的导电性一般通过掺入杂质原子取代原来的原子来控制。掺入的原子如果比原来的原子多一个价电子,则产生电子导电;如果掺入的杂质原子比原来的原子少一个价电子,则产生空穴导电。
半导体的应用十分广泛,主要是制成有特殊功能的元器件,如电晶体、积体电路、整流器、镭射器以及各种光电探测器件、微波器件等。
半导体的应用的问题1楼2楼耸人听闻,哪有那么严重。在半导体材料投入使用以前二战都已经结束了,大量采用电子管的电器装置已经投入民用。众所周知的事实是前苏联半导体材料发展极度落后,无论米格-25歼击机还是联盟号宇宙飞船都还使用着电子管装置,直到九十年代以后俄罗斯才逐步跟上来。
对日常生活的影响,简单地说——
一切使用微控制器也就是所谓“电脑板”的电器都重归机械控制;
不会出现微型计算机,只有巨型机/大型机/小型机,即便有了个人电脑也要衣柜那么大个,耗电量惊人,绝对奢侈品,笔记本就更不用说了;
没有微机当然更没有游戏机了,玩魂斗罗超级玛丽警察抓小偷永远是幻想;
收音机最小也要新华词典那么大,注意:是辞典不是字典;
电视机仍然是阴极射线管的,因为根本生产不出液晶板,不过幸好还能看到彩电;
微波炉可能要洗碗柜那么大吧?因为电子管是很占体积的;
洗衣机是半自动型的,使用机械定时器——微波炉也是。
冰箱一定是外形大大,立升小小,噪音隆隆,前苏联就有那种玩意的实物;
照相机继续用胶卷的,什么数码DC/DV统统不存在;
摄像机会相当笨重,只能用录影带;
您好!这里是邮电局,打电话请用拨盘拨号,如需拨往外地请让我为您转接……呃,这位同志,程控交换机是什么东西?——某人工接线员;
不存在什么VCD、DVD,录影机/放像机也不太会普及——太大、太贵;
没有了微型计算机你会感觉到练得一笔好字的必要性;
飞机导d卫星飞船空间站照样满天飞,战舰航母潜艇坦克照样满世界溜达;
网际网路可能会有,但那将是各国官方、军方和科研机构御用的玩意,跟咱老百姓没啥关系;
……能想起来的差不多都写上了。
半导体的应用,最好说详细点。试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……
数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。
计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。
人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。
为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。
在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。
液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。
由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。
半导体的具体应用最常见的:半导体收音机、掌上计算器、电脑内的主机板显示卡等硬体都要用道半导体、电视机里的部件也要用半导体晶片、手机内部的部件、汽车内也要用到的一些部件。目前大部分将用电器都要用到数字晶片,而不是模拟的(DSP),这些晶片说白了就是用半导体做成的。
半导体镭射器的应用半导体二极体镭射器在镭射通讯、光储存、光陀螺、镭射列印、测距以及雷达等方面以及获得了广泛的应用
还可以作为固体镭射器的泵浦源,安防领域照明光源,现在应用的领域非常广了
半导体的三个广泛应用:
一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
二、近来发展太阳能(Solar Power),也用在光电池(Solar Cell)中。
三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,解析度可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是价效比极高的一种测温元件。
参考百度百科,仅供参考!
半导体在生活中的应用试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光碟、网路会议、远端教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和网际网路的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……
数字生活已成为资讯化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。
计算机是数字生活中的重要装置,计算机的核心部件是中央处理器(CPU)和储存器(RAM),它们是以大规模积体电路为基础建造起来的,而这些积体电路都是由半导体材料做成的,Si片是第一代半导体材料,积体电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使积体电路具有高效率、低能耗、高速度的效能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型矽基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有矽积体电路的效能,是未来半导体材料的重要发展方向。
人机交换,常常需要将各种形式的资讯,如文字、资料、图形、影象和活动影象显示出来。静止资讯的显示手段最常用的如印表机、影印机、传真机和扫描器等,一般称为资讯的输出和输入装置。为提高解析度以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如镭射印表机和影印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动影象资讯的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。
为了减小CRT庞大的体积,资讯显示的趋势是高解析度、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极体显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。
在液晶显示技术中采用的液晶材料早已在手表、计算器、膝上型电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。
液晶显示材料在大萤幕显示中有一定的困难,目前作为大萤幕显示的主要候选物件为等离子体显示器(PDP)和发光二极体(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极体的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。
由于因特网和多媒体技术的迅速发展,人类要处理、传输和储存超高资讯容量达太(兆兆)数字位(Tb,1012bits),超高速资讯流每秒达太位(Tb/s),可以说人类已经进入了太位资讯时代。现代的资讯储存方式多种多样,以计算机系统储存为例,储存方式分为随机记忆体储、线上外储存、离线外储存和离线储存。随机记忆体储器要求整合度高、资料存取速度快,因此一直以大规模整合的微电子技术为基础的半导体动态随机储存器(DRAM)为主,256兆位的随机动态储存器的电晶体超过2亿个。外储存大都采用磁记录方式,磁储存介质的主要形式为磁带、磁泡、软磁碟和硬磁碟。磁储存密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁储存的资讯储存量从而有了很大的提高。固体(闪)储存器(flash memory)是不挥发可擦写的储存器,是基于半导体二极体的积体电路,比较紧凑和坚固,可以在记忆体与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁碟记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁储存有着非常重要的意义。
声视领域内镭射唱片和镭射唱机的兴起,得益于光储存技术的巨大发展,光碟存贮是通过调制镭射束以光点的形式把资讯编码记录在光学圆盘镀膜介质中。与磁储存技术相比,光碟储存技术具有储存容量大、储存寿命长;非接触式读/写和擦,光头不会磨损或划伤盘面,因此光碟系统可靠,可以自由更换;经多次读写载噪比(CNR)不降低。光碟储存技术经过CD(Compact Disk)、DVD(Digital Versatile Disk)发展到将来的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)过程中,储存介质材料是关键,一次写入的光碟材料以烧蚀型(Tc合金薄膜,Se-Tc非晶薄膜等)和相变型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、掺杂的ZnO薄膜、推拉型偶氮染料、亚酞菁染料)为主,可擦重写光碟材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土掺杂的石榴石系YIG、Co-Pt多层薄膜)为主。光碟储存的密度取决于镭射管的波长,DVD盘使用的InGaAlP红色镭射管(波长650nm)时,直径12cm的盘每面储存为4.7千兆位元组(GB),而使用ZnSe(波长515nm)可达12GB,将来采用GaN镭射管(波长410nm),储存密度可达18GB。要读写光盘里的资讯,必须采用高功率半导体镭射器,所用的镭射二极体采用化合物半导体GaAs、GaN等材料。
镭射器除了在光碟储存应用之外,在光通讯中的作用也是众所周知的。由于有了低阈值、低功耗、长寿命及快响应的半导体镭射器,使光纤通讯成为现实。光通讯就是由电讯号通过半导体镭射器变为光讯号,而后通过光导纤维作长距离传输,最后再由光讯号变为电讯号为人接收。光纤所传输的光讯号是由镭射器发出的,常用的为半导体镭射器,所用材料为GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探测器也为半导体材料。缺少光导纤维,光通讯也只能是“纸上谈兵”。低损耗的光学纤维是光纤通讯的关键材料,目前所用的光学纤维感测材料主要有低损耗石英玻璃、氟化物玻璃和Ga2S3为基础的硫化物玻璃和塑料光纤等,1公斤石英为主的光纤可代替成吨的铜铝电缆。光纤通讯的出现是资讯传输的一场革命,资讯容量大、重量轻、占用空间小、抗电磁干扰、串话少、保密性强,是光纤通讯的优点。光纤通讯的高速发展为现代资讯高速公路的建设和开通起到了至关重要的作用。
除了有线传播外,资讯的传播还采用无线的方式。在无线传播中最引人注目的发展是行动电话。行动电话的使用者愈多,所使用的频率愈高,现在正向千兆周的频率过渡,电话机的微波发射与接收亦是靠半导体电晶体来实现,其中部分Si电晶体正在被GaAs电晶体所取代。在手机中广泛采用的高频声表面波SAW(Surface Acoustic Wave)及体声波BAW(Bulk Surface Acoustic Wave)器件中的压电材料为a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等压电晶体及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高声速薄膜材料,采用的微波介质陶瓷材料则集中在BaO-TiO2体系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)体系、复合钙钛矿A(B1/3B¢2/3)O3体系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和铅基复合钙钛矿体系等材料上。
随着智慧化仪器仪表对高精度热敏器件需求的日益扩大,以及手持电话、掌上电脑PDA、膝上型电脑和其它行动式资讯及通讯装置的迅速普及,进一步带动了温度感测器和热敏电阻的大量需求,负温度系数(NTC)热敏电阻是由Co、Mn、Ni、Cu、Fe、Al等金属氧化物混合烧结而成,其阻值随温度的升高呈指数型下降,阻值-温度系数一般在百分之几,这一卓越的灵敏度使其能够探测极小的温度变化。正温度系数(PTC)热敏电阻一般都是由BaTiO3材料新增少量的稀土元素经高温烧结的敏感陶瓷制成的,这种材料在温度上升到居里温度点时,其阻值会以指数形式陡然增加,通常阻值-温度变化率在20~40%之间。前者大量使用在镍镉、镍氢及锂电池的快速充电、液晶显示器(LCD)影象对比度调节、蜂窝式电话和移动通讯系统中大量采用使用的温度补偿型晶体振荡器等中,来进行温度补偿,以保证器件效能稳定;此外还在计算机中的微电机、照相机镜头聚焦电机、印表机的列印头、软盘的伺服控制器和袖珍播放机的驱动器等中,发现它的身影。后者可以用于过流保护、发热器、彩电和监视器的消磁、袖珍压缩机电机的启动延迟、防止膝上型电脑常效应管(FET)的热击穿等。
为了保证资讯执行的通畅,还有许多材料在默默地作著贡献,例如,用于制作绿色电池的材料有:镍氢电池的正、负极材料用MH合金和Ni(OH)2材料、锂离子电池的正、负极用LiCoO2、LiMn2O4和MCMB碳材料等电极材料;行动电话、PC机以及诸如数码相机、MD播放机/录音机、DVD装置和游戏机等数字音/视讯装置等中钽电容器所用材料;现代永磁材料Fe14Nd2B在制造永磁电极、磁性轴承、耳机及微波装置等方面有十分重要的用途;印刷电路板(PCB)及超薄高、低介电损耗的新型覆铜板(CCL)用材料;环氧模塑料、氧化铝和氮化铝陶瓷是半导体和积体电路晶片的封装材料;积体电路用关键结构与工艺辅助材料(高纯试剂、特种气体、塑封料、引线框架材料等),不一而足,这些在浩瀚的材料世界里星光灿烂的新材料,正在数字生活里发挥着不可或缺的作用。
随着科技的发展,大规模积体电路将迎来深亚微米(0.1mm)矽微电子技术时代,小于0.1mm的线条就属于奈米范畴,它的线宽就已与电子的德布罗意数相近,电子在器件内部的输运散射也将呈现量子化特性,因而器件的设计将面临一系列来自器件工作原理和工艺技术的棘手问题,导致常说的矽微电子技术的“极限”。由于光子的速度比电子速度快得多,光的频率比无线电的频率高得多,为提高传输速度和载波密度,资讯的载体由电子到光子是必然趋势。目前已经发展了许多种镭射晶体和光电子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有这些材料将为以光通讯、光储存、光电显示为主的光电子技术产业作出贡献。随着资讯材料由电子材料、微电子材料、光电子材料向光子材料发展,将会出现单电子储存器、奈米晶片、量子计算机、全光数字计算机、超导电脑、化学电脑、生物电脑和神经电脑等奈米电脑,将会极大地影响着人类的数字生活。
本世纪以来,以数字化通讯(Digital Communication)、数字化交换(Digital Switching)、数字化处理(Digital Processing)技术为主的数字化生活(Digital Life)正在向我们招手,一步步地向我们走来——清晨,MP3音箱播放出悦耳的晨曲,催我们按时起床;上班途中,开启随身携带的膝上型电脑,进行新一天的工作安排;上班以后,通过网际网路召开网路会议、开展远端教学和实时办公;在下班之前,我们远端启动家里的空调和溼度调节器,保证家中室温适宜;下班途中,开启手机,悠然自在观看精彩的影视节目;进家门前,我们接收网上订购的货物;回到家中,和有线电视台进行互动,观看和下载喜欢的影视节目和歌曲,制作多媒体,也可进入社群网际网路,上网浏览新闻了解天气……这一切看上去是不是很奇妙?似乎遥不可及。其实它正在和将要发生在我们身边,随着新一代家用电脑和网际网路的出现,如此美好数字生活将成为现实。当享受数字生活的同时,饮水思源,请不要忘记为此作出巨大贡献的功臣——绚丽多彩的新材料世界!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)