半导体产业深度报告:制造业巅峰,晶圆代工赛道持续繁荣

半导体产业深度报告:制造业巅峰,晶圆代工赛道持续繁荣,第1张

台积电开启晶圆代工时代,成为集成电路中最为重要的一个环节。 1987 年,台积电的成立开启了 晶圆代工时代,尤其在得到了英特尔的认证以后,晶圆代工被更多的半导体厂商所接受。晶圆代工 打破了 IDM 单一模式,成就了晶圆代工+IC 设计模式。目前,半导体行业垂直分工成为了主流, 新进入者大多数拥抱 fabless 模式,部分 IDM 厂商也在逐渐走向 fabless 或者 fablite 模式。

全球晶圆代工市场一直呈现快速增长,未来有望持续 。晶圆代工+IC 设计成为行业趋势以后,受益 互联网、移动互联网时代产品的强劲需求,整个行业一直保持快速增长,以台积电为例,其营业收 入从 1991 年的 1.7 亿美元增长到 2019 年的 346 亿美元,1991-2019 年,CAGR 为 21%。2019 年全球晶圆代工市场达到了 627 亿美元,占全球半导体市场约 15%。未来进入物联网时代,在 5G、 人工智能、大数据强劲需求下,晶圆代工行业有望保持持续快速增长。

晶圆代工行业现状:行业呈现寡头集中。 晶圆代工是制造业的颠覆,呈现资金壁垒高、技术难度大、 技术迭代快等特点,也因此导致了行业呈现寡头集中,其中台积电是晶圆代工行业绝对的领导者, 营收占比超过 50%,CR5 约为 90%。

晶圆代工行业资金壁垒高。 晶圆代工厂的资本性支出巨大,并且随着制程的提升,代工厂的资本支 出中枢不断提升。台积电资本支出从 11 年的 443 亿元增长到 19 年的 1094 亿元,CAGR 为 12%。 中芯国际资本性支出从 11 年的 30 亿元增长到了 19 年的 131 亿元,CAGR 为 20%,并且随着 14 nm 及 N+1 制程的推进,公司将显著增加 2020 年资本性支出,计划为 455 亿元。巨额投资将众多 追赶者挡在门外,新进入者难度极大。

随着制程提升,晶圆代工难度显著提升。 随着代工制程的提升,晶体管工艺、光刻、沉积、刻蚀、 检测、封装等技术需要全面创新,以此来支撑芯片性能天花板获得突破。

晶体管工艺持续创新。 传统的晶体管工艺为 bulk Si,也称为体硅平面结构(Planar FET)。 随着 MOS 管的尺寸不断的变小,即沟道的不断变小,会出现各种问题,如栅极漏电、泄漏功 率大等诸多问题,原先的结构开始力不从心,因此改进型的 SOI MOS 出现,与传统 MOS 结 构主要区别在于:SOI 器件具有掩埋氧化层,通常为 SiO2,其将基体与衬底隔离。由于氧化 层的存在,消除了远离栅极的泄漏路径,这可以降低功耗。随着制程持续提升,常规的二氧 化硅氧化层厚度变得极薄,例如在 65nm 工艺的晶体管中的二氧化硅层已经缩小仅有 5 个氧 原子的厚度了。二氧化硅层很难再进一步缩小了,否则产生的漏电流会让晶体管无法正常工 作。因此在 28nm 工艺中,高介电常数(K)的介电材料被引入代替了二氧化硅氧化层(又称 HKMG 技术)。随着设备尺寸的缩小,在较低的技术节点,例如 22nm 的,短沟道效应开始 变得更明显,降低了器件的性能。为了克服这个问题,FinFET 就此横空出世。FinFET 结构 结构提供了改进的电气控制的通道传导,能降低漏电流并克服一些短沟道效应。目前先进制 程都是采用 FinFET 结构。

制程提升,需要更精细的芯片,光刻机性能持续提升。 负责“雕刻”电路图案的核心制造设备是光刻机,它是芯片制造阶段最核心的设备之一,光刻机的精度决定了制程的精度。第四 代深紫外光刻机分为步进扫描投影光刻机和浸没式步进扫描投影光刻机,其中前者能实现最 小 130-65nm 工艺节点芯片的生产,后者能实现最小 45-22nm 工艺节点芯片的生产。通过多 次曝光刻蚀,浸没式步进扫描投影光刻机能实现 22/16/14/10nm 芯片制作。到了 7/5nm 工艺, DUV 光刻机已经较难实现生产,需要更为先进的 EUV 光刻机。EUV 生产难度极大,零部件 高达 10 万多个,全球仅 ASML 一家具备生产能力。目前 EUV 光刻机产量有限而且价格昂 贵,2019 年全年,ASML EUV 销量仅为 26 台,单台 EUV 售价高达 1.2 亿美元。

晶圆代工技术迭代快,利于头部代工厂。 芯片制程进入 90nm 节点以后,技术迭代变快,新的制程 几乎每两到三年就会出现。先进制程不但需要持续的研发投入,也需要持续的巨额资本性支出,而 且新投入的设备折旧很快,以台积电为例,新设备折旧年限为 5 年,5 年以后设备折旧完成,生产 成本会大幅度下降,头部厂商完成折旧以后会迅速降低代工价格,后进入者难以盈利。

2.1摩尔定律延续,技术难度与资本投入显著提升

追寻摩尔定律能让消费者享受更便宜的 力,晶圆代工是推动摩尔定律最重要的环节。 1965 年, 英特尔(Intel)创始人之一戈登·摩尔提出,当价格不变时,集成电路上可容纳的元器件的数目, 约每隔 18-24 个月便会增加一倍,性能也将提升一倍,这也是全球电子产品整体性能不断进化的核 心驱动力,以上定律就是著名的摩尔定律。换而言之,每一美元所能买到的电脑性能,将每隔 18- 24 个月翻一倍以上。推动摩尔定律的核心内容是发展更先进的制程,而晶圆代工是其中最重要的 环节。

摩尔定律仍在延续。 市场上一直有关于摩尔定律失效的顾虑,但是随着 45nm、28nm、10nm 持续 的推出,摩尔定律仍然保持着延续。台积电在 2018 年推出 7nm 先进工艺,2020 年开始量产 5nm, 并持续推进 3nm 的研究,预计 2022 年量产 3nm 工艺。IMEC 更是规划到了 1nm 的节点。此外, 美国国防高级研究计划局进一步提出了先进封装、存算一体、软件定义硬件处理器三个未来发展研 究与发展方向,以此来超越摩尔定律。在现在的时间点上来看,摩尔定律仍然在维持,但进一步提 升推动摩尔定律难度会显著提升。

先进制程资本性投入进一步飙升 。根据 IBS 的统计,先进制程资本性支出会显著提升。以 5nm 节 点为例,其投资成本高达数百亿美金,是 14nm 的两倍,是 28nm 的四倍。为了建设 5nm 产线, 2020 年,台积电计划全年资本性将达到 150-160 亿美元。先进制程不仅需要巨额的建设成本,而 且也提高了设计企业的门槛,根据 IBS 的预测,3nm 设计成本将会高达 5-15 亿美元。

3nm 及以下制程需要采用全新的晶体管工艺。 FinFET 已经历 16nm/14nm 和 10nm/7nm 两个工艺 世代,随着深宽比不断拉高,FinFET 逼近物理极限,为了制造出密度更高的芯片,环绕式栅极晶 体管(GAAFET,Gate-All-Ground FET)成为新的技术选择。不同于 FinFET,GAAFET 的沟道被 栅极四面包围,沟道电流比三面包裹的 FinFET 更加顺畅,能进一步改善对电流的控制,从而优化 栅极长度的微缩。三星、台积电、英特尔均引入 GAA 技术的研究,其中三星已经先一步将 GAA 用 于 3nm 芯片。如果制程到了 2nm 甚至 1nm 时,GAA 结构也许也会失效,需要更为先进的 2 维 、 甚至 3 维立体结构,目前微电子研究中心(Imec)正在开发面向 2nm 的 forksheet FET 结构。

3nm 及以下制程,光刻机也需要升级。 面向 3nm 及更先进的工艺,芯片制造商或将需要一种称为 高数值孔径 EUV(high-NA EUV)的光刻新技术。根据 ASML 年报,公司正在研发的下一代极紫 外光刻机将采用 high-NA 技术,有更高的数值孔径、分辨率和覆盖能力,较当前的 EUV 光刻机将 提高 70%。ASML 预测高数值孔径 EUV 将在 2022 年以后量产。

除上面提到巨额资本与技术难题以外,先进制程对沉积与刻蚀、检测、封装等环节也均有更高的要 求。正是因为面临巨大的资本和技术挑战,目前全球仅有台积电、三星、intel 在进一步追求摩尔定 律,中芯国际在持续追赶,而像联电、格罗方德等晶圆代工厂商已经放弃了 10nm 及以下制程工艺 的研发,全面转向特色工艺的研究与开发。先进制程的进一步推荐节奏将会放缓,为中芯国际追赶 创造了机会。

2.2先进制程占比持续提升,成熟工艺市场不断增长

高性能芯片需求旺盛,先进制程占比有望持续提升。 移动终端产品、高性能计算、 汽车 电子和通信 及物联网应用对算力的要求不断提升,要求更为先进的芯片,同时随着数据处理量的增加,存储芯 片的制程也在不断升级,先进制程的芯片占比有望持续提升。根据 ASML2018 年底的预测,到 2025 年,12 寸晶圆的先进制程占比有望达到 2/3。2019 年中,台积电 16nm 以上和以下制程分别占比 50%,根据公司预计,到 2020 年,16nm 及以下制程有望达到 55%。

CPU、逻辑 IC、存储器等一般采用先进制程(12 英寸),而功率分立器件、MEMS、模拟、CIS、 射频、电源芯片等产品(从 6μm 到 40nm 不等)则更多的采用成熟工艺(8 寸片)。 汽车 、移动 终端及可穿戴设备中超过 70%的芯片是在不大于 8 英寸的晶圆上制作完成。相比 12 寸晶圆产线,8 寸晶圆制造厂具备达到成本效益生产量要求较低的优势,因此 8 寸晶圆和 12 寸晶圆能够实现优 势互补、长期共存。

受益于物联网、 汽车 电子的快速发展,MCU、电源管理 IC、MOSFET、ToF、传感器 IC、射频芯 片等需求持续快速增长。 社会 已经从移动互联网时代进入了物联网时代,移动互联网时代联网设备 主要是以手机为主,联网设备数量级在 40 亿左右,物联网时代,设备联网数量将会成倍增加,高 通预计到 2020 年联网 设备数量有望达到 250 亿以上。飙升的物联网设备需要需要大量的成熟工艺 制程的芯片。以电源管理芯片为例,根据台积电年报数据,公司高压及电源管理晶片出货量从 2014 年的 1800 万片(8 寸)增长到 2019 年的 2900 万片,CAGR 为 10%。根据 IHS 的预测,成熟晶 圆代工市场规模有望从 2020 年的 372 亿美元增长到 2025 年的 415 亿美元。

特色工艺前景依旧广阔,主要代工厂积极布局特色工艺。 巨大的物联网市场前景,吸引了众多 IC 设计公司开发新产品。晶圆代工企业也瞄准了物联网的巨大商机,频频推出新技术,配合设计公司 更快、更好地推出新一代芯片,助力物联网产业高速发展。台积电和三星不仅在先进工艺方面领先布局,在特色工艺方面也深入布局,例如台积电在图像传感器领域、三星在存储芯片领域都深入布 局。联电、格罗方德、中芯国际、华虹半导体等代工厂也全面布局各自的特色工艺,在射频、 汽车 电子、IOT 等领域,形成了各自的特色。

5G 时代终端应用数据量爆炸式提升增加了对半导体芯片的需求,晶圆代工赛道持续繁荣。 随着对 于 5G 通信网络的建设不断推进,不仅带动数据量的爆炸式提升,要求芯片对数据的采集、处理、 存 储 效率更高,而且也催生了诸多 4G 时代难以实现的终端应用,如物联网、车联网等,增加了终 端对芯片的需求范围。对于芯片需求的增长将使得下游的晶圆代工赛道收益,未来市场前景极其广 阔。根据 IHS 预测,晶圆代工市场规模有望从 2020 年的 584 亿美元,增长到 2025 年的 857 亿美 元,CAGR 为 8%。

3.15G 推动手机芯片需求量上涨

5G 手机渗透率快速提升。手机已经进入存量时代,主要以换机为主。2019 年全球智能手机出货量 为 13.7 亿部,2020 年受疫情影响,IDC 等预测手机总体出货量为 12.5 亿台,后续随着疫情的恢 复以及 5G 产业链的成熟,5G 手机有望快速渗透并带动整个手机出货。根据 IDC 等机构预测,5G 手机出货量有望从 2020 年的 1.83 增长到 2024 年的 11.63 亿台,CAGR 为 59%。

5G 手机 SOC、存储和图像传感器全面升级,晶圆代工行业充分受益。 消费者对手机的要求越来越 高,需要更清晰的拍照功能、更好的 游戏 体验、多任务处理等等,因此手机 SOC 性能、存储性能、 图像传感器性能全面提升。目前旗舰机的芯片都已经达到了 7nm 制程,随着台积电下半年 5 nm 产 能的释放,手机 SOC 有望进入 5nm 时代。照片精度的提高,王者荣耀、吃鸡等大型手游和 VLOG 视频等内容的盛行,对手机闪存容量和速度也提出了更高的要求,LPDDR5 在 2020 年初已经正式 亮相小米 10 系列和三星 S20 系列,相较于上一代的 LPDDR4,新的 LPDDR5 标准将其 I/O 速 度从 3200MT/s 提升到 6400MT/s,理论上每秒可以传输 51.2GB 的数据。相机创新是消费者更 换新机的主要动力之一,近些年来相机创新一直在快速迭代,一方面,多摄弥补了单一相机功能不 足的缺点,另一方面,主摄像素提升带给消费者更多的高清瞬间,这两个方向的创新对晶圆及代工 的需求都显著提升。5G 时代,手机芯片晶圆代工市场将会迎来量价齐升。

5G 手机信号频段增加,射频前端芯片市场有望持续快速增长。射频前端担任信号的收发工作,包 括低噪放大器、功率放大器、滤波器、双工器、开关等。相较于 4G 频段,5G 的频段增加了中高 频的 Sub-6 频段,以及未来的更高频的毫米波频段。根据 yole 预测,射频前端市场有望从 2018 年 的 149 亿美元,增长到 2023 年的 313 亿美元,CAGR 为 16%。

3.2云计算前景广阔,服务器有望迎来快速增长

2020 年是国内 5G 大规模落地元年,有望带来更多数据流量需求 。据中国信通院在 2019 年 12 月 份发布的报告,2020 年中国 5G 用户将从去年的 446 万增长到 1 亿人,到 2024 年我国 5G 用户 渗透率将达到 45%,人数将超过 7.7 亿人,全球将达到 12 亿人,5G 用户数的高增长带来流量的 更高增长。

5G 时代来临,云计算产业前景广阔。 进入 5G 时代,IoT 设备数量将快速增加,同时应用的在线 使用需求和访问流量将快速爆发,这将进一步推动云计算产业规模的增长。根据前瞻产业研究院的 报告,2018 年中国云计算产业规模达到了 963 亿元,到 2024 年有望增长到 4445 亿元,CAGR 为 29%,产业前景广阔。

边缘计算是云计算的重要补充,迎来新一轮发展高潮。 根据赛迪顾问的数据,2018 年全球边缘计 算市场规模达到 51.4 亿美元,同比增长率 57.7%,预计未来年均复合增长率将超过 50%。而中国 边缘计算市场规模在 2018 年达到了 77.4 亿元,并且 2018-2021 将保持 61%的年复合增长率,到 2021 年达到 325.3 亿元。

服务器大成长周期确定性强。 服务器短期拐点已现,受益在线办公和在线教育需求旺盛,2020 年 服务器需求有望维持快速增长。长期来看,受益于 5G、云计算、边缘计算强劲需求,服务器销量 有望保持持续高增长。根据 IDC 预测,2024 年全球服务器销量有望达到 1938 万台,19-24 年, CAGR 为 13%。

服务器半导体需求持续有望迎来快速增长,晶圆代工充分受益。 随着服务器数量和性能的提升,服 务器逻辑芯片、存储芯片对晶圆的需求有望快速增长,根据 Sumco 的预测,服务器对 12 寸晶圆 需求有望从 2019 年的 80 万片/月,增长到 2024 年的 158 万片/月,19-24 年 CAGR 为 8%。晶圆 代工市场有望充分受益服务器芯片量价齐升。

3.3三大趋势推动 汽车 半导体价值量提升

传统内燃机主要价值量主要集中在其动力系统。 而随着人们对于 汽车 出行便捷性、信息化的要求逐 渐提高, 汽车 逐步走向电动化、智能化、网联化,这将促使微处理器、存储器、功率器件、传感器、 车载摄像头、雷达等更为广泛的用于 汽车 发动机控制、底盘控制、电池控制、车身控制、导航及车 载 娱乐 系统中, 汽车 半导体产品的用量显著增加。

车用半导体有望迎来加速增长。 根据 IHS 的报告,车用半导体销售额 2019 年为 410 亿美元,13- 19 年 CAGR 为 8%。随着 汽车 加速电动化、智能化、网联化,车用芯片市场规模有望迎来加速, 根据 Gartner 的数据,全球 汽车 半导体市场 2019 年销售规模达 410.13 亿美元,预计 2022 年有望 达到 651 亿美元,占全球半导体市场规模的比例有望达到 12%,并成为半导体下游应用领域中增 速最快的部分。

自动驾驶芯片要求高,有望进一步拉动先进制程需求。 自动驾驶是通过雷达、摄像头等将采集车辆 周边的信息,然后通过自动驾驶芯片处理数据并给出反馈,以此降低交通事故的发生率、提高城市 中的运载效率并降低驾驶员的驾驶强度。自动驾驶要求多传感器之间能够及时、高效地传递信息, 并同时完成路线规划和决策,因此需要完成大量的数据运算和处理工作。随着自动驾驶级别的上升, 对于芯片算力的要求也越高,产生的半导体需求和价值量也随之水涨船高。英伟达自动驾驶芯片随 着自动驾驶级别的提升,芯片制程也显著提升,最早 Drive PX 采用的是 20nm 工艺,而最新 2019 年发布的 Drive AGX Orin 将会采用三星 8nm 工艺。根据英飞凌的预测,自动驾驶给 汽车 所需要的 半导体价值带来相当可观的增量,一辆车如果实现 Level2 自动驾驶,半导体价值增量就将达到 160 美元,若自动驾驶级别达到 level4&5,增量将会达到 970 美元。

3.4IoT 快速增长,芯片类型多

随着行业标准完善、技术不断进步、政策的扶持,全球物联网市场有望迎来爆发性增长。GSMA 预 测,中国 IOT 设备联网数将会从 2019 年的 36 亿台, 增到 到 2025 年的 80 亿台,19-25 年 CAGR 为 17.3%。根据全球第二大市场研究机构 MarketsandMarkets 的报告,2018 年全球 IoT 市场规模 为 795 亿美元,预计到 2023 年将增长到 2196 亿美元,18-23 年 CAGR 为 22.5%。

物联网的发展需要大量芯片支撑,半导体市场规模有望迎来进一步增长 。物联网感知层的核心部件 是传感器系统,产品需要从现实世界中采集图像、温度、声音等多种信息,以实现对于所处场景的 智能分析。感知需要向设备中植入大量的 MEMS 芯片,例如麦克风、陀螺仪、加速度计等;设备 互通互联需要大量的通信芯片,包括蓝牙、WIFI、蜂窝网等;物联网时代终端数量和数据传输通道 数量大幅增加,安全性成为最重要的需求之一,为了避免产品受到恶意攻击,需要各种类型的安全 芯片作支持;同时,身份识别能够保障信息不被盗用,催生了对于虹膜识别和指纹识别芯片的需求; 作为物联网终端的总控制点,MCU 芯片更是至关重要,根据 IC Insights 的预测,2018 年 MCU 市 场规模增长 11%,预计未来四年内 CAGR 达 7.2%,到 2022 年将超过 240 亿美元。

4.1 国内 IC 设计企业快速增长,代工需求进一步放量

国内集成电路需求旺盛,有望持续维持快速增长。 国内集成电路市场需求旺盛,从 2013 年的 820 亿美元快速增长到 2018 年的 1550 亿美元,CAGR 为 13.6%,IC insight 预测,到 2023 年,中国 集成电路市场需求有望达到 2290 亿美元,CAGR 为 8%。但是同时,国内集成电路自给率也严重 不足,2018 年仅为 15%,IC insight 在 2019 年预测,到 2023 年,国内集成电路自给率为 20%。

需求驱动,国内 IC 设计快速成长。 在市场巨大的需求驱动下,国内 IC 设计企业数量快速增加,尤 其近几年,在国内政策的鼓励下,以及中美贸易摩擦大的背景下,IC 设计企业数量加速增加,2019 年底,国内 IC 设计企业数量已经达到了 1780 家,2010-2019 年,CAGR 为 13%。根据中芯国际 的数据,国内 IC 设计公司营收 2020 年有望达到 480 亿美元,2011-2020 年 CAGR 为 24%,远 高于同期国际 4%的复合增长率。

国内已逐步形成头部 IC 设计企业。 根据中国半导体行业协会的统计,2019 年营收前十的入围门槛 从 30 亿元大幅上升到 48 亿元,这十大企业的增速也同样十分惊人,达到 47%。国内 IC 企业逐步 做大做强,部分领域已经形成了一些头部企业:手机 SoC 芯片领域有华为海思、中兴微电子深度 布局;图像传感领域韦尔豪威大放异彩;汇顶 科技 于 2019 年引爆了光学屏下指纹市场;卓胜微、 澜起 科技 分别在射频开关和内存接口领域取得全球领先。IC 设计企业快速成长有望保持对晶圆代 工的强劲需求。

晶圆代工自给率不足。 中国是全球最大的半导体需求市场,根据中芯国际的预测,2020 年中国对 半导体产品的需求为 2130 亿美元,占全球总市场份额为 49%,但是与之相比的是晶圆代工市场份 额严重不足,根据拓墣研究的数据,2020Q2,中芯国际和华虹半导体份额加起来才 6%,晶圆代 工自给率严重不足,尤其考虑到中国 IC 设计企业数量快速增长,未来的需求有望持续增长,而且, 美国对华为等企业的禁令,更是让我们意识到了提升本土晶圆代工技术和产能的重要性。

4.2政策与融资支持,中国晶圆代工企业迎来良机(略)

晶圆代工需求不断增长,但国内自给严重不足,受益需求与国内政策双重驱动,国内晶圆代工迎来 良机。建议关注:国内晶圆代工龙头,突破先进制程瓶颈的中芯国际-U、特色化晶 圆代工与功率半导体 IDM 双翼发展的华润微华润微、坚持特色工艺,盈利能力强的华虹半导体华虹半导体。

……

(报告观点属于原作者,仅供参考。作者:东方证券,蒯剑、马天翼)

如需完整报告请登录【未来智库】www.vzkoo.com。

先简单介绍一下本人,曾在世界一流台企半导体公司任职PIE(制程整合工程师),目前跳槽到design house(芯片设计公司) 做产品工程师。之后的文章会浅谈一下PIE的工作性质和职业规划。

观看这篇文章的大部分读者应该是近期打算入职半导体行业的朋友,这两年国内半导体行业发展对于半导体行业的工程师来说是一件好事,我身边的朋友都比较喜欢把半导体行业和当年的计算机行业相比,未来发展前景很大。半导体行业相比计算机行业有一个优势,那就是半导体相关的知识其实很难从学校里学习到(特别是制程方面),换而言之这个行业不会被新人挤掉,工程师工作经验越丰富,工作能力也就越强,是个可以长久吃下去的饭碗。

从半导体芯片生产的全过程来说,首先呢是会有一些公司生产晶圆,晶圆是半导体芯片生产的“地基”,有一种公司是将沙子制造成晶圆。有了晶圆之后,之后是将芯片的设计图盖到晶片上。这类公司国内目前岗位空缺很大,我之前也是在这种公司上班,这里可以和大家详细的讲解一下这类公司的职员推荐。

先说说fab里的生态,比较底层的工程师是设备工程师,这类工程师主要和设备打交道,主要的工作内容是对机台进行日常的维护,会有大量的时间在生产线上,半导体生产线需要很高的无尘条件,所以设备工程师常年穿着那种实验室的无尘服,之前听过一个朋友无尘服过敏!!此外在维护机台的时候会和一些化学试剂接触,有接触危险化学试剂的可能,不太推荐这种岗位,工作强度很大,机台故障可能随时被拉回公司维护,听说之前厂里有一个朋友喝完酒被拉回公司做维护,结果吐到机台里面了。未来的职业规划能可以往下游设备厂商那边去,工作会轻松一点,其次呢是往制程工程师转职。

制程工程师在fab厂里会根据制程的特性划分,比如蚀刻的晶片制程会有一个蚀刻制程部门,去制程工程师那边工作强度看部门的,也看厂,有些芯片的制作工艺对离子注入敏感度很高,那离子注入部门就很忙,不过正常来说蚀刻部门算是最倒霉的,因为蚀刻是一锤子买卖,很容易出问题。这类工程师比较好的职业规划有新制程导入岗位,其他fab的制程工程师,厂商等,基本是平级或者往下游跳槽。

一个fab里比较重要的两个部门是PIE 和 YED,分别是制程整合和良率提升。

对于比较先进的芯片制造工艺,PIE算是一个厂的心脏,话语权很大,对于新入行的朋友这个部门是比较推荐的(特别是先进制程公司),可以学习到很多东西,这里不细说,后面在写一篇文章介绍这个职位的工作内容。不过可以简单的说这个职位可以学习到一个fab厂的所有东西(皮毛的那种),工作能力强点的同事可以兼做YED PES的工作,所以后续的职业规划就很广泛,基本上半导体行业的岗位都可以跳槽,比如产品工程师(fab或者desing house的产品工程师都不错),SQE,contact window等等,年轻好学一点的也有机会去做设计工程师。YED 其实和PIE类似,看fab厂里生态,有些厂制程比较稳定,晶片的良率问题基本是来自defect,那种fab YED的话语权就比较大。PES算是做更多客户那边数据的分析,可以考虑往上游客户跳槽。

我个人认为fab厂的岗位性价比比较高的算是PIE YED,工作压力会稍微比设备和制程工程师轻松一些,不建议刚入职直接去PES,PES这个岗位我个人是觉得有一点PIE的经验再转过去比较好一些。

后面会再写一写fab厂里的工作状态,入职面试技巧之类的内容。

写作不易,欢迎点赞打赏~~~哈哈·~

易车讯 2021年9月17日——英飞凌科技股份公司今日宣布,其位于奥地利菲拉赫的300毫米薄晶圆功率半导体芯片工厂正式启动运营。这座以“面向未来”为座右铭的芯片工厂,总投资额为16亿欧元,是欧洲微电子领域同类中最大规模的项目之一,也是现代化程度最高的半导体器件工厂之一。欧盟委员Thierry Breton、奥地利总理Sebastian Kurz、英飞凌科技股份公司首席执行官Reinhard Ploss博士、英飞凌科技奥地利股份公司首席执行官Sabine Herlitschka博士共同出席了新工厂的开业庆典。

着眼于通过增效减排来实现长期盈利性增长,英飞凌早在2018年就宣布新建一座芯片工厂,用于生产功率半导体器件(高能效芯片)。英飞凌首席执行官Reinhard Ploss博士表示:“新工厂是英飞凌发展史上的又一重要里程碑,其启动运营对于我们的客户来说也是重大利好消息。由于全球对功率半导体器件的需求不断增长,当前正是新增产能的最好时机。过去几个月的市场形势已经清楚地表明,微电子技术至关重要,几乎涵盖了生活的各个领域。随着数字化和电气化进程的加快,我们预计未来几年全球对功率半导体器件的需求将持续增长。新增产能将帮助我们更好地为全球客户提供长期的优质服务。”

全球芯片市场的形势表明,投资于创新技术对于未来发展而言非常重要。在当今世界,微电子技术是占据主导地位的关键技术,数字化领域的相关研发、系统和技术均以此为基础。在业内,英飞凌的产能扩张对于维持全球供应链稳定具有里程碑式的意义。

首批产品目前正在出货

经过三年的准备和建设,新工厂于8月初投产,比原计划提前了3个月。首批晶圆将在本周完成出货。在扩大产能的第一阶段,所产芯片将主要用于满足汽车行业、数据中心、以及太阳能和风能等可再生能源发电领域的需求。在公司整体层面,新工厂有望为英飞凌带来每年约 20 亿欧元的销售额提升。

菲拉赫工厂生产的半导体将用于多种应用。 因此,新工厂将使英飞凌能够服务于电动汽车、数据中心以及太阳能和风能领域对功率半导体不断提升的市场需求。从数字上来看,规划的工业半导体年产能将能够满足发电量总和约1,500 TWh的太阳能系统之所需,而这约是德国年耗电量的三倍。

英飞凌科技奥地利股份公司首席执行官Sabine Herlitschka博士表示:“这项投资表明,在竞争激烈的微电子领域,欧洲有能力成为极具吸引力的生产基地。通过这项投资,我们也树立了全新的标杆。菲拉赫新厂生产的高能效芯片,将成为推动能源转型的核心力量。通过新工厂,英飞凌正在为《欧洲绿色协议》(European Green Deal)目标的实现乃至为全球的低碳节能发展做出积极贡献。我们已经做好了面向未来的准备!”

高能效芯片助力打造绿色环保产品

多年来,英飞凌的产品一直在为提高能源效率乃至气候保护做出贡献。作为英飞凌全球功率半导体的专业核心,菲拉赫工厂在这些解决方案中发挥着重要作用。这些高能效芯片可以智能地控制电源开关,可以显著降低诸如家用电器、LED照明设备和移动设备等众多应用的能耗,从而最大限度地减少碳排放。例如,现代半导体器件能够将冰箱的能耗降低40%,将建筑照明的能耗降低25%。得益于菲拉赫工厂的产品组合,采用新生产设施所生产的产品能够减少超过 1300 万吨的二氧化碳排放。这相当于欧洲 2000 多万居民产生的二氧化碳量。

高效节能的工厂

在菲拉赫工厂的建设过程中,英飞凌特别注意进一步改善能源使用状况:通过冷却系统的废热智能回收利用,能够满足工厂80%的供暖需求,每年减少约2万吨二氧化碳排放。另外,废气净化系统的广泛使用,让直接排放几乎为零。

在可持续生产和循环经济方面的另一重要里程碑,是绿氢的生产和回收。自2022年初开始,生产过程中所需的氢气将直接在菲拉赫工厂利用可再生能源来制备,从而消除原生产和运输环节中的二氧化碳排放。绿氢在用于芯片生产后将被回收,为公交巴士提供动力。这一双重使用绿氢的项目在欧洲是独一无二的。通过这些举措,菲拉赫新厂正在发挥重要作用,大力推动英飞凌在2030年实现碳中和目标。

高度现代化的芯片工厂将欧洲的两个生产基地连接在一起,形成了一个巨型工厂

新工厂的总占地面积约为6万平方米,产能将在未来4到5年内逐步提升。工厂运营所需的400名高素质专业人士中,有三分之二已经到岗。

该工厂是世界上最现代化的芯片工厂之一,依靠的是全自动和数字化。作为“学习型工厂”(learning factory), 人工智能解决方案将广泛用于预测性维护。联网化的工厂将能够基于大量的数据分析和模拟,提早预知何时需要维护。

在自动化和数字化的基础上,英飞凌百尺竿头,更进一步。英飞凌科技股份公司管理委员会成员兼首席运营官Jochen Hanebeck表示:“英飞凌现在有两座用于生产功率半导体器件的大型300毫米薄晶圆芯片工厂,一座位于德累斯顿,另一座位于菲拉赫。两座工厂基于相同的标准化生产和数字化理念,使得我们能够像控制一座工

厂一样,来控制两座工厂的生产运营,不仅进一步提高了产能,而且能够为客户提供更高的灵活性。这是因为,我们能够在两座工厂之间迅速调整不同产品的产量,从而更加快速地响应客户需求。这两家工厂实质上“合体”成为同一个巨型虚拟工厂,成为英飞凌在300毫米制造领域树立的新标杆,能够进一步提高资源和能源使用效率、优化环境足迹。

全球300毫米薄晶圆技术和功率半导体领域的开拓者

芯片在300毫米薄晶圆上进行生产制造,而薄晶圆的厚度只有40微米,比人的发丝还要细。菲拉赫是英飞凌功率半导体的专业核心,长期以来一直是公司生产制造网络中一个非常重要的、具有创新性的基地。约十年前,英飞凌在这里成功开发出了在300毫米薄晶圆上生产功率半导体的技术,并于近几年在德累斯顿工厂实现了全自动化批量生产。由于晶圆直径较大,这种技术的使用带来了显著的产能优势,并降低了资本开支。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9215261.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存