首先澄清一个容易混淆的概念,在半导体物理中的“电子”一般理解为“电子载流子”,即位于导带上的电子。所以这里的”正离子填隙“不是提供了电子,而是提供了位于导带的电子。
两个角度去理解:
设问题中的半导体为本征半导体。首先考虑电中性条件,设正离子填隙密度为N,电子载流子密度为n,空穴载流子密度为p。有p+N=n再考虑热平衡条件,np==ni^2联立即可解得n>ni, 即掺杂后电子密度大于原电子密度。注意这里电中性条件适用范围是整个半导体,热平衡条件成立等价于Fermi-Dirac分布适用。
物理直观上,正离子填隙提供了正电中心。这些正电中心破坏了周围价电子形成的共价键(这里假设讨论的半导体是硅),使得他们更容易被激发到导带变成电子载流子,起到了施主杂质的作用。
改变半导体局部导电性的重要方法主要有以下几种:
掺杂:在半导体材料中掺入不同的杂质原子,可以改变材料的导电性质。掺入五价元素(如磷、砷等)可以形成N型半导体,掺入三价元素(如硼、铝等)可以形成P型半导体。
离子注入:通过离子注入技术,在半导体表面形成高能离子轰击区域,使局部区域的导电性质发生改变。离子注入通常用于制作集成电路器件的精细控制区域。
光刻技术:利用光刻技术在半导体表面覆盖一层光刻胶,并在胶面上利用投影机将芯片上的图形投影到光刻胶上,最后在芯片表面暴露出光刻胶中未被覆盖的部分。通过这种方式,可以在芯片表面形成精细的图形结构,进而改变半导体的局部导电性。
聚焦离子束(FIB)技术:FIB技术利用高能离子束在半导体表面进行刻蚀和刻划,可以制作出微米级别的半导体器件结构。通过这种方法可以在半导体表面形成局部结构,进而改变局部区域的导电性质。
这些方法通常用于半导体器件的制造和修饰,可以在半导体表面形成精细的结构和控制区域,对于半导体器件的性能和功能的提升非常重要。
热缺陷是由于晶体中的原子(或离子)的热运动而造成的缺陷,从几何图形上看是一种点缺陷,热缺陷的数量与温度有关,温度愈高,造成缺陷的机会愈多。晶体中热缺陷有2种形态,一是肖脱基(Schotty)缺陷,2是弗仑克尔(Frenkel)缺陷。1)肖脱基缺陷
由于热运动,晶体中阳离子及阴离子脱离平衡位置,跑到晶体表面或晶界位置上,构成一层新的界面,而产生阳离子空位及阴离子空位,不过,这些阳离子空位与阴离子空位是符合晶体化学计量比的。如:MgO晶体中,形成Mg2+和O2-空位数相等。而在TiO2中,每形成一个Ti4+离子空位,就形成两个O2-离子空位。肖脱基缺陷实际产生过程是:由于靠近表面层的离子热运动到新的晶面后产生空位,然后,内部邻近的离子再进入这个空位,这样逐步进行而造成缺陷。
2)弗仑克尔缺陷
弗仑克尔缺陷形成过程为:一种离子脱离平衡位置挤入晶体的间隙位置中去,形成所谓间隙(或称填隙)离子,而原来位置形成了阳离子或阴离子空位。这种缺陷的特点是间隙离子和空位是成对出现的。弗仑克尔缺陷除与温度有关外,与晶体本身结构也有很大关系,若晶体中间隙位置较大,则易形成弗仑克尔缺陷。如AgBr比NaCl易形成这种缺陷。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)