影响半导体禁带宽度的因素有哪些?分别是怎么影响的?

影响半导体禁带宽度的因素有哪些?分别是怎么影响的?,第1张

我来回答一下,本人某电微电子科学与工程专业,有表述不当之处,望批评指正。影响半导体禁带宽度的因素主要有两种:温度与掺杂浓度。(以si、Ge、GaAs半导体为主)1、半导体禁带宽度具有负温度系数: 从原子到晶体,经过价键杂化(即:sp3杂化),一条原子能级一般对应多个能带。当温度升高时,晶体的原子间距增大,能带宽度虽然变窄,但禁带宽度却是减小的。(这里解释一下,虽然原子间距增大了,并且能带宽度变窄了,但是此时有多条能带,相对来说,禁带宽度是变小的);2、掺杂浓度升高时,由于杂质能级的出现,可能导致禁带宽度变窄:其实这一点从本质来解释是不太好理解的,我这里举个例子,再给出我个人的一些理解,希望可以帮助你理解这一点。例:在BJT中,发射区高掺杂会导致禁带宽度变窄。我个人理解是,有了杂质能级的加入,导电性增强,就像把禁带宽度一分为二,原先的阻碍减少了一部分,相当于禁带宽度变窄了。(纯属个人理解)

半导体掺杂之后会引入杂志能级,以目前主流的半导体Si进行掺杂为例: Si为4族元素,掺杂3族元素B,B元素电离后作为受主能级存在在半导体之中,形成P型半导体。

此时Si元素为杂志提供了电子,则半导体中载流子为空穴。

研究固体中电子运动规律的一种近似理论。固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。孤立原子的能带 孤立原子的外层电子可能取的能量状态(能级)完全相同,但当原子彼此靠近时,外层电子就不再仅受原来所属原子的作用,还要受到其他原子的作用,这使电子的能量发生微小变化。原子结合成晶体时,原子最外层的价电子受束缚最弱,它同时受到原来所属原子和其他原子的共同作用,已很难区分究竟属于哪个原子,实际上是被晶体中所有原子所共有,称为共有化。原子间距减小时,孤立原子的每个能级将演化成由密集能级组成的准连续能带。共有化程度越高的电子,其相应能带也越宽。孤立原子的每个能级都有一个能带与之相应,所有这些能带称为允许带。相邻两允许带间的空隙代表晶体所不能占有的能量状态,称为禁带。若晶体由N个原子(或原胞)组成,则每个能带包括N个能级,其中每个能级可被两个自旋相反的电子所占有,故每个能带最多可容纳2N个电子(见泡利不相容原理)。价电子所填充的能带称为价带。比价带中所有量子态均被电子占满,则称为满带。满带中的电子不能参与宏观导电过程。无任何电子占据的能带称为空带。未被电子占满的能带称为未满带。例如一价金属有一个价电子,N个原子构成晶体时,价带中的2N个量子态只有一半被占据,另一半空着。未满带中的电子能参与导电过程,故称为导带。固体的能带 固体的导电性能由其能带结构决定。对一价金属,价带是未满带,故能导电。对二价金属,价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电,绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。半导体的禁带宽度从0.1~1.5电子伏,绝缘体的禁带宽度从1.5~1.0电子伏。在任何温度下,由于热运动,满带中的电子总会有一些具有足够的能量激发到空带中,使之成为导带。由于绝缘体的禁带宽度较大,常温下从满带激发到空带的电子数微不足道,宏观上表现为导电性能差。半导体的禁带宽度较小,满带中的电子只需较小能量就能激发到空带中,宏观上表现为有较大的电导率(见半导体)。 能带理论在阐明电子在晶格中的运动规律、固体的导电机构、合金的某些性质和金属的结合能等方面取得了重大成就,但它毕竟是一种近似理论,存在一定的局限性。例如某些晶体的导电性不能用能带理论解释,即电子共有化模型和单电子近似不适用于这些晶体。多电子理论建立后,单电子能带论的结果常作为多电子理论的起点,在解决现代复杂问题时,两种理论是相辅相成的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9217155.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存