在更智能化发展上,TWS各大厂商的脚步从没有停止。投入重研发,引领新技术,打造差异化,开发新赛道,技术供应链越来越成熟,产品更新迭代越来越快。
金九银十,在9月3日由旭日大数据主办的TWS峰会上,会有将近50家现场展商携带与以往完全不同的新品亮相,而TWS也将以全新的面貌展示未来更多的可能性。
截止2021年7.26日,图解供应链上榜产品已达32款。
作为TWS真无线蓝牙耳机的主控“大脑”,主控芯片承载着蓝牙传输,降噪,RF,CODEC等多项功能,是TWS耳机中不可或缺的重要部件,也是TWS耳机占比最大份额的细分领域。在数据君与产业链专业人士沟通时,了解到目前在TWS领域中,拥有开发设计蓝牙主控芯片的厂商涉及上百家,数据君通过图解供应链也整理出七家优秀主控芯片供应商,让我们一起来 探索 一下,蓝牙主控芯片的奇妙世界吧!
TWS供应链——主控芯片供应商
其中BES恒玄在供应链中出现次数多达18次,Qualcomm高通和Airoha络达出现次数在5次,APPLE苹果/Actions炬芯/Hisilicon华为海思/RealTek瑞昱出现次数均在1次。
恒玄 科技
恒玄 科技 主要从事智能音频SoC芯片的研发,设计与销售,为客户提供AIoT场景下具有语音交互能力的边缘智能主控平台芯片,产品广泛应用于智能蓝牙耳机,Type-C耳机,智能音箱等智能终端产品。恒玄 科技 致力于成为全球最具创新力的芯片设计公司,以前瞻的研发及专利布局,持续的技术积累,快速的产品迭代,灵活的客户服务,不断推出领先优势的产品及解决方案,成为AIoT主控平台芯片的领导者。
高通
高通(英文名称:Qualcomm,中文简称:高通公司、美国高通或美国高通公司)创立于1985年,高通是全球领先的无线 科技 创新者,变革了世界连接、计算和沟通的方式。把手机连接到互联网,高通的发明开启了移动互联时代。在中国,高通开展业务已逾20年,与中国生态伙伴的合作已拓展至智能手机、集成电路、物联网、大数据、软件、 汽车 等众多行业。
络达 科技
Airoha络达 科技 成立于2001年,是业界领先的IC设计领导厂商,首个十年致力于开发无线通信的高度集成电路,为客户提供高性能、低成本的各式射频与混合信号集成电路组件、及蓝牙无线通信芯片,累积长足的无线通信射频经验与人才;第二个十年则投入蓝牙低功耗单芯片与蓝牙无线音频系统解决方案,于2017年成为联发 科技 集团公司一员后,更进一步结合集团力量跨足物联网领域,提供具备各类型无线通信技术的低功耗微型处理器系统芯片,连接未来物联网世界中亿万个智能装置。
苹果
苹果公司(Appleinc.)是一家美国跨国公司总部位于加州库比蒂诺,公司设计,开发,和销售消费电子产品、计算机软件、在线服务,和个人电脑。最著名的电脑硬件产品有Mac系列,iPod媒体播放器,iPhone智能手机和iPad平板电脑。在线服务包括iCloud、iTunes和AppStore。其消费者软件包括OSX和iOS *** 作系统,iTunes媒体浏览器,Safari浏览器,iLife和iWork。
炬芯 科技
炬芯 科技 股份有限公司主营业务为中高端智能音频SoC芯片的研发、设计及销售。
炬芯主要产品为蓝牙音频SoC芯片系列、便携式音视频SoC芯片系列、智能语音交互SoC芯片系列等,广泛应用于蓝牙音箱、蓝牙耳机、蓝牙语音遥控器、蓝牙收发一体器、智能教育、智能办公、智能家居等领域。公司深耕以音频编解码、模数混合多媒体处理、电源管理和高速模拟接口为核心的低噪声、低功耗、高品质音频全信号链技术。以及以蓝牙射频、基带和协议栈技术为核心的低功耗无线连接技术。公司擅长在低功耗的基础上提供高品质音质,专精将射频通信、电源管理、模数混合音频信号处理、CPU、DSP以及存储单元等模块集成于一颗单芯片SoC上;同时,通过融合软件开发包和核心算法提升SoC的价值,帮助客户降低基于芯片开发量产的门槛。面对领域众多、终端开发能力差异较大的客户群,公司可提供整体解决方案以及方便二次开发的软硬件开发平台。
华为海思
海思半导体是一家半导体公司,海思半导体有限公司成立于2004年10月,前身是创建于1991年的华为集成电路设计中心。海思公司总部位于深圳,在北京、上海、美国硅谷和瑞典设有设计分部。海思的产品覆盖无线网络、固定网络、数字媒体等领域的芯片及解决方案,成功应用在全球100多个国家和地区;在数字媒体领域,已推出SoC网络监控芯片及解决方案、可视电话芯片及解决方案、DVB芯片及解决方案和IPTV芯片及解决方案。2019年海思Q1营收达到了17.55亿美元,同比大涨了41%,增速远远高于其他半导体公司,排名也上升到了第14位。
瑞昱半导体
瑞昱半导体成立于1987年,位于有着中国台湾“硅谷”之称的新竹科学园区,凭借当年几位年轻工程师的热情与毅力,走过艰辛的草创时期到今日具世界领导地位的专业IC设计公司,瑞昱半导体披荆斩棘,展现旺盛的企图心与卓越的竞争力,开发出广受全球市场肯定与欢迎的高性能、高品质与高经济效益的IC解决方案。瑞昱半导体自成立以来一直保持稳定的成长,归功于瑞昱对产品/技术研发与创新的执着与努力,同时也归因于瑞昱的优良传统。
TWS耳机市场有多大?
根据旭日大数据统计数据显示,2020年全球TWS出货4.6亿对,同比增长43.75%。预计2021年全球出货量还将继续上升。
其中,品牌占比44%,白牌所占市场份额为56%。相较2019年而言不难发现,品牌占比正在稳步提升中,白牌市场份额进一步缩窄,不过仍然占据主要市场。
可以肯定的是,TWS市场发展已然迎来全新风口,出货量突破十亿大关指日可待。
TWS主控芯片市场趋势
一、蓝牙技术更迭,优化TWS耳机用户体验
在2020年1月,蓝牙技术联盟(BluetoothSpecial Interest Group,简称SIG)正式发布新一代蓝牙音频技术标准——BluetoothLE Audio(低功耗蓝牙音频,以下简称BLEAudio),意味着低功耗蓝牙技术标准将支持音频传输功能。BLEAudio具有低功耗、连接范围广、单模蓝牙芯片成本较低等优势,因此旭日大数据认为未来单模低功耗蓝牙有望替代传统蓝牙,换言之移动电子设备仅需使用单模低功耗蓝牙芯片即可。
BLEAudio拥有三大技术特点
1:低复杂性通信编解码器(LowComplexity Communication Codec,LC3)
2:多重串流音频(Multi-StreamAudio)
3:广播音频分享(AudioSharing)
二、TWS主控芯片“晋级”
SiP(SysteminPackage,系统级封装)为一种封装的概念,是将一个系统或子系统的全部或大部分电子功能配置在整合型基板内,而芯片以2D、3D的方式接合到整合型基板的封装方式。SiP不仅可以组装多个芯片,还可以作为一个专门的处理器、DRAM、快闪存储器与被动元件结合电阻器和电容器、连接器、天线等,全部安装在同一基板上上。这意味着,一个完整的功能单位可以建在一个多芯片封装,因此,需要添加少量的外部元件,使其工作。
行业总结
TWS耳机市场的火热让多家芯片厂商在蓝牙音频SoC上竞相角逐,不断推出各种蓝牙真无线方案。有芯片自研能力的大牌倾向于使用自研芯片以期获得对自家产品最好的优化。相比TWS品牌厂商的百花齐放,芯片厂商的头部集中度更加明显,每个厂商都有差异化的目标市场,不过,我们相信随着TWS行业的发展,这种明确的两极分化格局最终会被打破,头部优秀的供应商将更多地扩展产品线,覆盖更多市场。
半导体魔角超晶格中的连续Mott跃迁
文章出处: Tingxin Li, Shengwei Jiang, Lizhong Li, Yang Zhang, Kaifei Kang, Jiacheng Zhu, Kenji Watanabe, Takashi Taniguchi, Debanjan Chowdhury, Liang Fu, Jie Shan, Kin Fai Mak. Continuous Mott transition in semiconductor moire superlattices. Nature 2021 , 597 , 350-354.
摘要: 随着电子相互作用的增加,Landau费米液体演化为非磁性Mott绝缘体是物理学中最令人困惑的量子相变之一。这一跃迁的邻近区域被认为是物质的奇异态,如量子自旋液体、激子凝聚和非常规超导。半导体魔角材料在三角形晶格上实现了高度可控的Hubbard模型模拟,通过连续调谐电子相互作用提供了一个独特的机会来驱动金属-绝缘体过渡(MIT)。在这里,通过电调节MoTe2/WSe2魔角超晶格的有效相互作用强度,作者观察到一个在每个单元晶胞固定填充一个电子的连续的MIT现象。量子临界的存在是由电阻的缩放塌缩、绝缘侧接近临界点时电荷隙的连续消失和金属侧发散的准粒子有效质量所支持的。作者还观察到磁化率在MIT的平稳演化,没有证据表明在Curie-Weiss温度约5%的范围内存在长程磁序。这表明在绝缘侧有大量的低能自旋激发,而在金属侧观察到的Pomeranchuk效应需进一步证实。作者的结果与二维连续Mott跃迁的普遍批判理论是一致的。
相互作用引起的电子局域化-Mott跃迁预计会发生在半填充的Hubbard模型中。当电子的动能(以带宽 W 为特征)远远超过其相互作用能(以现场库仑斥力 U 为特征)时,基态是具有明确定义的电子费米表面的金属。相反,当 U W 时,基态是带有电荷隙的绝缘体。当 U 和 W 具有可比性时,系统将经历一次MIT过程。尽管Mott和Hubbard的开创性著作广泛接受了这一观点,但人们对这种转变的本质仍知之甚少。在大多数材料中,过渡是一级驱动的,经常伴随着同时的磁性、结构或其它形式的有序。连续的MIT现象,表现出不对称的破坏,整个电子费米表面的突然消失和同时打开电荷穿过量子临界点,仍然是凝聚态物理的突出问题之一。尽管对这一主题进行了广泛的理论研究,但实验研究对象仍然很少。
连续的Mott跃迁通常受到几何挫折和降维的青睐,其中强量子涨落可以削弱甚至猝灭不同类型的有序。魔角二维过渡金属二卤族(TMDs)异质结构为Mott跃迁提供了理想的实验平台,该异质结构被认为实现了三角晶格Hubbard模式。该系统是高度可控的,允许独立调节填充因子和有效相互作用强度( U / W )。特别地,在场效应器件中,电子密度可以通过门控连续调谐。理论上,有效相互作用强度可以通过改变TMD层之间的转角来调整,转角决定了魔角周期,从而决定了带宽。这里作者演示了平面外电场连续调谐 U / W 。电场改变了两层TMD之间的电位差,进而改变了魔角电位差,主要改变了局域Wannier函数的大小和带宽。作者研究了在固定的半带填充时系统的电输运和磁性质作为有效相互作用的函数。
作者研究了具有空穴掺杂的近零取向的MoTe2/WSe2异质双层膜。两种TMD材料的晶格失配率约为7%。在零转角时,它们形成一个三角形的魔角超晶格,周期约为5 nm (图1a),对应于魔角密度约为5 1012 cm-2。在每个TMD单分子层中,带边位于具有双自旋谷简并的Brillouin区的K/K'点。用密度泛函理论(DFT)表征了弛豫零度取向MoTe2/WSe2异质双层膜的电子能带结构。它们具有I型能带排列,价带偏移量约为300 meV(传导和价带边缘均来自MoTe2)。图1d给出了两个平面外位移场 D 下的前两个魔角价带,这两个值减小了价带偏移。位移场对能带色散有很强的影响。对于足够大的场,第一个魔角频带的带宽随 D 迅速增加(图1e),支持带宽调谐MITs的可行性。两种材料的大晶格失配具有一些实际优势。由于魔角周期对零度附近的转角不敏感,异质结构不容易受到角度排列不均匀造成的失调的影响。与无序密度(约1011 cm-2)相比,较大的魔角密度或等效的掺杂密度在半填充时更有利于纯粹的相互作用驱动的MITs。最后,大掺杂密度有助于形成良好的电接触,以便在低温下进行传输测量。
作者用六方氮化硼(hBN)栅极介质和石墨栅极电极制作了MoTe2/WSe2异质双层材料的双栅场效应器件(图1a,1b)。位于顶部与底部的典型hBN的厚度分别为5 nm和20~30 nm。作者将器件按霍尔条几何形状进行图形化,并将4点片电阻降至300 mK。图1c显示器件1在300 mK时的方形电阻 R 是两个栅极电压的函数。它可以转换成电阻作为填充因子 f 的函数,并使用已知的器件几何形状应用于平面外电场 E (顶部和底部电场的平均值)。两个显著的电阻特征分别对应于 f = 1和2,其中 f = 1表示每个魔角晶胞有一个空穴,即魔角价带的一半被填满。在足够大的应用领域,它们都变成金属。 f = 2时的MIT在一个更小的场。它的机理不同于 f = 1时的Mott跃迁。应用的磁场关闭第一和第二魔角带之间的间隙,并诱导从带绝缘体到补偿半金属的过渡。它对Mott绝缘状态没有明显的影响。
图2a说明了典型电场下电阻在70 K以下的温度依赖性。它们表现出两种行为。在临界磁场以下,电阻在冷却时增加。这是绝缘体的特性。电阻随热活化而变化。作者在图2b中提取了用于电荷传输的激活间隙Δ。当 E c从下面接近时,间隙大小从几十meV单调减小到几meV。它遵循幂律关系Δ | E - E c| νz ,其中指数 νz0.60 0.05 (图2c)。
在临界电场以上,电阻在低温至10 K范围内与 T 2有关。这是具有电子-电子umklapp散射的Landau费米液体的特征。作者用 R = R 0 + AT 2拟合低温电阻,其中 R 0为剩余电阻,根据Kadowaki-Woods扩展定律, A 1/2与准粒子有效质量 m ⁎成正比。当 E 从上面接近 E c时(图2d), A 1/2的电场依赖关系可以用幂律 A 1/2m * | E - E c|-1.4 0.1发散来很好地描述。结果表明,整个电子费米表面都对输运有贡献,由于MIT附近的量子涨落, m ⁎在 E c处发散。
电阻在较高温度下偏离 T 2的依赖关系,在温度 T *时达到最大值,并随着温度的进一步升高而减小。在这里,类绝缘行为遵循幂次定律,而不是激活温度依赖。 T *值在接近MIT时减小(图3c)。平方电阻可以超过Mott-Ioffe-Regel极限(图2a中水平虚线), h / e 2,其中 h 和 e 分别表示普朗克常数和基本电荷。这相当于一个比魔角时期小的平均自由路径,并暗示了“坏”的金属行为。
接下来作者演示了MIT附近电阻曲线的量子临界尺度塌缩。作者首先确定临界场的精确值,在该值处观察到 R ( T )的简单幂律依赖性。作者用临界磁场 R c( T )处的电阻使 R ( T )归一化。MIT附近的电阻曲线在温度随磁场变化的 T 0s缩放后坍塌成两个分支(图3a,3b)。顶部和底部分支分别代表绝缘和金属传输行为,它们在对数图中显示出约 R / R c = 1的反射对称。作者通过在绝缘侧的一个场将其与测量的电荷间隙匹配来确定 T 0的刻度。使用相同的 T 0s,不作任何调整,在与临界点等距离的金属侧缩放曲线。尺度参数 T 0在接近临界场时连续消失(图2b)。与电荷间隙相似, T 0遵循幂律关系 T 0 | E - E c| νz 呈,其指数为 νz0.70 0.05 (图2c)。图3a,3b也比较了同一装置在不同热循环后的两组测量结果,受到紊乱的影响,非常接近临界点。
作者在图3c中显示了|log( R / R c)|的场温相图。它揭示了被广泛观察到的量子临界的“扇形”结构。Widom线接近临界场的垂直蓝线。 T ⁎线及其镜像(对应|log( R / R c)| 0.45)为MIT附近的有限温度交叉设定了尺度,即量子临界区边界。在这个区域内有d R /d T <0,它与下面讨论的Pomeranchuk效应相关。
由于Mott绝缘体的基态和低能激发态是由磁相互作用决定的,因此作者研究了临界点附近的磁性能。平行于二维平面的磁场与自旋耦合较弱,这是由于TMDs中强的Ising自旋-轨道相互作用。作者利用磁圆二色性(MCD)表征了TMD魔角异质结构中空穴在平面外磁场 B 下的磁化强度。图4a显示了MCD在1.6 K时的几个电场的磁场依赖关系。在小的区域内,MCD随 B 线性增加,在 B * (符号)以上饱和。饱和场 B *在金属侧随电场的增大而增大,而在绝缘侧则随电场的增大而减弱(约4-5 T)。两侧的MCD饱和是由不同的机理引起的。在金属方面, B *与磁阻饱和场(图4c)很好地吻合,此时传输从金属过渡到绝缘。在绝缘方面, B *反映了磁相互作用能尺度。MCD可以转换为磁化,因为在饱和时,它的值对应于完全极化自旋的磁化强度。
然后由 B = 0附近的磁化率斜率得到磁化率 χ 。图4b显示了 χ -1在不同电场下的温度依赖性。对于1.6 K以下的所有电场,它都是平滑的。高温条件下,所有的数据都可以用负的Weiss常数θ 30-40 K的Curie-Weiss依赖关系 χ -1T - θ 描述(图中虚线)。这反映了Hubbard模型局域矩之间的反铁磁超交换相互作用,并揭示了在MIT附近两侧的磁相互作用能约为3 meV (与图4a中绝缘侧测量到的 B *一致)。图4b还显示了在低温下,靠近MIT的两侧的磁化率都很高。在金属方面,磁化率饱和发生在 T * (用箭头标记)附近。磁化率也显示出一个平滑的依赖于电场通过MIT到1.6 K (图4d)。
在低温下,系统在金属方面是Landau费米液体,由费米面附近重费米子的Pauli磁化率给出 χ 。在~ T *以上,系统进入非相干状态,易感性遵循Curie-Weiss依赖性。这与通过 T *加热时从金属(d R /d T >0)到类似绝缘的(d R /d T <0)传输的交叉相关。这种行为让人想起在氦-3中观察到的Pomeranchuk效应,其中局域化电荷的增加和局域矩的形成导致加热时自旋熵的增加。当塞曼能量超过重正化带宽( gμ B B *W *)时,相干准粒子也会被破坏。这张图与图4c中的磁阻数据一致,并且 gμ B B *与图3c中的热激发能( k B T *W *)吻合较好。其中 g 、 μ B和 k B分别表示空穴 g 因子(TMDs中g 11)、玻尔磁子和玻尔兹曼常数。与大多数二维电子系统相比,TMD的魔角超晶格中的空穴塞曼能量明显大于回旋能,这是由于较大的 g 因子和较重的带质量,而魔角平带又进一步提高了带质量。
在MIT附近,由于 U 和 W 均为数十meV,磁相互作用能(~3 meV)为系统的最小能量尺度。最低测量温度(磁和输运性质分别为1.6 K和300 mK)远远低于这个能量尺度。因此,没有任何自旋间隙迹象的 χ 对所有电场的平滑温度依赖关系(图4b)和 χ 在MIT的平滑演化(图4d)支持了两侧没有长程磁序。这些观察指出,MIT从费米液体到非磁性(或120度Néel低于1.6 K)Mott绝缘体在有限温度下具有广泛的自旋熵。这是预期的受挫晶格,并被Pomeranchuk效应进一步证实。此外,由于 m ⁎在金属方面发散, χ 在MIT上的平滑演化意味着Landau参数 F 0a是发散的;类似地,发散的 F 0s压缩率必须在MIT处消失。
综上所述,作者证明了MoTe2/WSe2的魔角超晶格在300 mK下的连续Mott跃迁,并在量子临界点附近进行了标度分析。MIT是由改变平面外电场引起的,该电场主要改变魔角电位深度,从而改变 U / W 。作者的结果,包括连续消失的电荷隙,发散的有效质量,贯穿MIT的恒定自旋磁化率,以及Pomeranchuk效应,都指向了一个清晰的例子,在连续MIT中,整个电子费米表面突然消失。此外,由于半带填充密度几乎比无序密度高两个数量级,无序仅在观测到的相互作用驱动的MIT中起扰动作用。在二维电子气体系统中,作者观察到的密度调谐的MITs与具有非常不同的能量尺度且没有晶格的二维电子气体系统具有显著的相似性,突出了跃迁的普遍性。未来对跃迁附近的输运和磁性特性的研究,特别是在较低温度下的研究,可能揭示物质的新奇异态,如量子自旋液体。
我前段时间也学习了解了一下晶圆的制作过程,有些资料,你看看吧~@~由半导体国际收集
晶圆清洗设备
Akrion
Applied Materials
Crest Ultrasonics
Dainippon Screen (DNS)
EV Group
FSI International
Lotus Systems
Megasonic Sweeping
SEZ (Lam Research)
Semitool
SES
Solid State Equipment
Tokyo Electron (TEL)
七星华创(SevenStar)
中联科利(United Cleaning Technology)
沈阳芯源
热处理设备
Applied Materials
ASM
ATV Technologie
Aviza Technology
Axcelis Technologies, Inc.
Axic
CVD Equipement
Kokusai Semiconductor Equipment
Mattson
Thermcraft
Tokyo Electron (TEL)
七星华创(SevenStar)
离子注入设备
Applied Materials
Axcelis Technologies, Inc.
Nissin Electric
Varian Semiconductor
北京中科信电子装备有限公司
CVD/PECVD/ALD设备
Applied Materials
Axic
AIXTRON
ASM
ATV Technologie
Aviza Technology
CVD Equipement
Hitachi Kokusai
Novellus
Oerlikon
Oxford Instruments
Tokyo Electron (TEL)
Veeco Instruments
海微芯仪半导体设备
中微半导体AMEC
七星华创(SevenStar)
沈阳科仪
PVD设备
Applied Materials
Aviza Technology
KDF
Novellus
Oerlikon(Unaxis Wafer Processing)
Oxford Instruments
Varian Semiconductor
Veeco Instruments
光刻设备
ASML
Canon
EV Group
Molecular Imprints
Nikon Precision
Suss MicroTec
Ultratech
Vistec Lithography
涂布/显影设备
Dainippon Screen (DNS)
EV Group
Sokudo Co. Ltd.
Solitec Wafer Processing
Suss MicroTec
Tokyo Electron (TEL)
沈阳芯源
刻蚀/去胶/灰化设备
Applied Materials
Aviza Technology
Axic
Hitachi High Technologies
Lam Research
Mattson Technology,Inc
Oerlikon
Oxford Instruments
Tokyo Electron (TEL)
Veeco Instruments
北方微电子
七星华创(SevenStar)
中微半导体AMEC
CMP设备
Applied Materials
Ebara Corporation
Entrepix,Inc
Kinetic Systems
Levitronix LLC
Novellus
盛美半导体
电镀系统设备
Applied Materials
ECI Technology
Novellus
Semitool
Surfect
盛美半导体
半导体工艺用石墨元件/材料
POCO Graphite
Carbone Lorraine(Le Carbone Advanced Graphites )
东洋炭素株式会社TOYO TANSO
西格里碳素集团SGL Group
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)