什么是pn结及半导体基础知识

什么是pn结及半导体基础知识,第1张

当 N 型半导体和 P 型半导体材料首次结合在一起时,PN 结两侧之间存在非常大的密度梯度。结果是,来自施主杂质原子的一些自由电子开始迁移穿过这个新形成的结,以填充 P 型材料中的空穴,从而产生负离子。

然而,由于电子已经从 N 型硅穿过 PN 结移动到 P 型硅,它们在负侧留下带正电的施主离子 ( N D ),现在来自受主杂质的空穴迁移穿过反方向的结进入有大量自由电子的区域。

结果,沿结的 P 型电荷密度被带负电的受体离子( N A )填充,沿结的 N 型电荷密度变为正。这种跨越 PN 结的电子和空穴的电荷转移称为扩散。这些 P 层和 N 层的宽度取决于每一侧分别掺杂受主密度N A和施主密度N D的程度。

这个过程来回持续,直到已经穿过结的电子数量具有足够大的电荷以排斥或阻止任何更多的电荷载流子穿过结。最终将出现平衡状态(电中性情况),当供体原子排斥空穴而受体原子排斥电子时,在结区域周围产生一个“势垒”区域。

由于没有自由电荷载流子可以停留在存在势垒的位置,因此与远离结的 N 和 P 型材料相比,结两侧的区域现在完全耗尽了任何更多的自由载流子。PN 结周围的这个区域现在称为耗尽层。

PN 结每一侧的总电荷必须相等且相反,才能在结周围保持中性电荷状态。如果耗尽层区域的距离为D,则它因此必须在正极侧穿透Dp的距离,在负极侧穿透Dn的距离,给出两者之间的关系: Dp*N A = Dn*N D 以保持电荷中性也称为平衡。

由于 N 型材料失去了电子而 P 型材料失去了空穴,因此 N 型材料相对于 P 型变为正。然后,在结的两侧存在杂质离子会导致在该区域上建立电场,N 侧相对于 P 侧处于正电压。现在的问题是,自由电荷需要一些额外的能量来克服现在存在的势垒,才能穿过耗尽区结。

在PN结的两端之间施加一个合适的正向电压(正向偏压)可以为自由电子和空穴提供额外的能量。克服目前存在的这种势垒所需的外部电压在很大程度上取决于所使用的半导体材料的类型及其实际温度。

通常在室温下,硅耗尽层两端的电压约为 0.6 – 0.7 伏,锗约为 0.3 – 0.35 伏。即使设备没有连接到任何外部电源,这种势垒也始终存在,如二极管所示。

这种跨结的内置电位的意义在于它反对空穴和电子穿过结的流动,这就是为什么它被称为势垒的原因。在实践中,PN 结是在单晶材料中形成的,而不是简单地将两个单独的部件连接或熔合在一起。

这一过程的结果是 PN 结具有整流电流-电压(IV 或 I-V)特性。电触点熔接到半导体的任一侧,以现与外部电路的电连接。制成的电子器件通常称为PN 结二极管或简称为信号二极管。

然后我们在这里看到,可以通过将不同掺杂的半导体材料连接或扩散在一起来制造 PN 结,以生产称为二极管的电子器件,该器件可用作整流器、所有类型的晶体管、LED、太阳能电池的基本半导体结构,以及更多这样的固态设备。

半导体(semi-conductor),是指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。常见的半导体材料有硅、锗、砷化镓等,而硅是在商业应用上最具有影响力的一种。

我们都在初中物理中都学过扩散原理。 由于浓度不均匀而产生的粒子定向运动,叫做扩散

当把P型半导体和N型半导体结合在一起后,虽然原子受共价键作用不能移动,但是空穴和自由电子是可以移动的。于是,在接触面附近的电子和空穴会向对方区域移动而复合消失。

用PN结做成的器件就是二极管。其实这种单向导通的特点,在生活中也很常见,比如,车站单向出口旋转门,轮胎的气门芯,防止水管逆流的止回阀,心脏和血管里防止血液逆流的瓣膜。

相关链接:

1、 去看看二极管长啥样

2、 PN结二极管的什么时候发明的

P型半导体又叫空穴型半导体,在纯净的硅晶体中掺入三价元素(如硼、铝),使之取代晶格中硅原子的位置,就形成了P型半导体。由于硼或铝原子周围有3个价电子,与周围4价硅原子组成共价结合时缺少一个电子,形成一个空穴。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。 N型半导体又称为电子型半导体,在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。由于磷原子周围有5个价电子,与周围4价硅原子配位共价键外还有一个多余电子,形成自由电子。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。 在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。 在P型半导体和N型半导体结合后,由于N型区内自由电子为多子,空穴几乎为零称为少子,而P型区内空穴为多子,自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。由于自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区。由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止扩散。 PN结存在结电容,因此PN结的单向导电性有个允许的最高工作频率。结电容越小,允许的工作频率越高。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9223138.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存