在次磷酸H3PO2中,H|O=P-OH|H只有一个-OH,-OH上的氢是可以电离的,所以它是一元酸。一元酸是一个酸分子只能电离出一个氢离子,如HCl、HNO3、HBr等,都称为一元酸。
次磷酸(H3PO2)为一元酸,具有较强的还原性。可利用NaH2PO2为原料,通过四室电渗析法制备,采用惰性电极,ab,cd,ef均为只允许阳离子(或阴离子)通过的离子交换膜,分别称为阳膜(或阴膜)。
【应用】
在有机化学中,次磷酸可以将芳香重氮盐Ar-N2+还原为芳香烃Ar-H。将此反应与芳烃的硝化、硝基的还原及重氮化反应联用,可以先向芳环上引入氨基,借助氨基的定位效应,将某个基团引入到芳环的某个位置上去。然后再通过重氮化-还原把氨基除去。
水合次磷酸钠在工业上用作还原剂,尤其是用于在金属、非金属和塑料表面化学镀镍。表面镍层一般为无定形或含10%左右磷的金属镍。加热时可以产生Ni3P从而使镀层硬度增强。除次磷酸盐外,镀液还包含氯化镍(或硫酸镍)、乳酸(配位剂)、苹果酸盐或琥珀酸盐(加速沉积)及铅盐(稳定剂)。
以上内容参考:百度百科-次磷酸
半导体 能带 p型半导体 n型 半导体 晶体二极管、三极管【半导体】 导电性能介于导体和绝缘体之间非离子性导电的物质。室温时其电阻率约为10-3~l09欧姆·厘米。一般是固体。例如锗(Ge)、硅(Si)以及一些化合物半导体。如碲化铅(PbTe)、砷化铟(InAs)、硫化铅(PbS)、碳化硅(SiC)等。与金属材料不同,半导体中杂质含量和外界条件的改变(如温度变化、受光照射等),都会使半导体的导电性能发生显著变化。纯度很高,内部结构完整的半导体,在极低的温度下几乎不导电,接近绝缘体。但随着温度的升高半导体的电阻迅速减小。含有少量杂质,内部结构不很完整的半导体通常可分为n型和p型两类。半导体的p-n结以及半导体同某些金属相接触的边界层,都具有单向导电或在光照下产生电势差的特性。利用这些特性可以制成各种器件,如半导体二极管、三极管和集成电路等。半导体之所以具有介于导体和绝缘体之间的导电性,是因为它的原子结构比较特殊,即其外层电子既不象导体那样容易挣脱其原子核的束缚,也不象绝缘体中的电子被原子核紧紧地束缚着。这就决定了它的导电性介于两者之间。
【能带】 研究固体物理学中的一种理论。虽然所有的固体都包含大量的电子,但有的具有很好的电子导电性能,有的则基本上观察不到任何电子导电性。这一基本事实曾长期得不到解释。在能带理论的基础上,首次对为什么有导体、绝缘体和半导体的区分提出了一个理论上的说明,这是能带论发展初期的重大成就。在物理学中往往形象化地用水平横线表示电子的能量值,能量越大,线的位置越高。一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为“能带”。各种晶体的能带数目及其宽度等均不相同。相邻两能带间的能量范围称为“能隙”或“禁带”,晶体中的电子不能具有这种能量。完全被电子占据的能带称为“满带”,满带中的电子不会导电;没有电子占据的带称为“空带”;部分被占据的称为“导带”,导带中的电子才能导电,价电子所占据的能带称为“价带”。能量比价带低的各能带一般都是满带。价带可以是满带也可以是导带;如在金属中是导带,所以金属能导电,在绝缘体和半导体中是满带,所以它们不能导电。但半导体很容易因其中有杂质或受外界影响(如光照、加热等),使价带中的电子数减少,或使空带中出现一些电子而成为导带,因而也能导电。
【本征半导体】 不含杂质且结构非常完整的半导体单晶,其中参与导电的电子和空穴数目相等。温度极低时,其电阻率很大,极难导电;随着温度升高,电阻率急剧减小。当硅、锗等半导体材料制成单晶体时,其原子的排列就由杂乱无章的状态变成非常整齐的状态。其原子之间的距离都是相等的,约为2.35×10-4微米。每个原子最外层的4个电子,不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系。这时,每两个相邻的原子之间都共有一对电子。电子对中的任何一个电子,一方面围绕自身原子核运动,另一方面也时常出现在相邻的原子所属的轨道上,这样的组合叫做“共价键”结构。硅、锗共价键结构的特点是它们外层共有的电子所受到的束缚力并不象在绝缘体中那样紧,在一定的温度下,由于热运动,其中少数电子还是可能挣脱束缚而成为自由电子,形成电子载流子。当共有电子在挣脱束缚成为自由电子后,同时留下了一个空位。有了这样一个空位,附近的共有电子就很容易来进行填补,从而形成共有电子的运动。这种运动,无论是效果上还是现象上,都好象一个带正电荷的空位子在移动。为了区别于自由电子的运动,就把这种运动叫做“空穴”运动,空位子叫做“空穴”。由此可见,空穴也是一种载流子。当半导体处于外加电压作用之下,通过它的电流可以看作是由自由电子的定向移动所形成的电子流,另一部分是带正电的空穴定向移动。所以半导体中,不仅有电子载流子还有空穴载流子,这是半导体导电的一个特点。这种纯单晶半导体,虽然多了一种空穴载流子,但是载流子的总数离开实际应用的要求,也就是从具有良好导电能力的要求来看,还相差很远,所以这种本征半导体的实际用处不大。
【杂质半导体】在纯单晶的本征半导体中,掺杂一些有用的杂质,使其导电特性得到很大的改善。而其导电性能取决于杂质的类型和含量。这样的半导体即称为“杂质半导体”。大多数半导体都是这一种类型。将半导体材料提纯,再用扩散或用离子注入法掺入适当的杂质,可以制成n型半导体或p型半导体。利用不同类型的杂质半导体,可以制成整流器,半导体二极管、半导体三极管和集成电路等重要部件。由此可以看到,只有杂质半导体才是最有用的。
【n型半导体】“n”表示负电的意思,在这类半导体中,参与导电的主要是带负电的电子,这些电子来自半导体中的“施主”杂质。所谓施主杂质就是掺入杂质能够提供导电电子而改变半导体的导电性能。例如,半导体锗和硅中的五价元素砷、锑、磷等原子都是施主杂质。如果在某一半导体的杂质总量中,施主杂质的数量占多数,则这种半导体就是n型半导体。如果在硅单晶中掺入五价元素砷、磷。则在硅原子和砷、磷原子组成共价键之后,磷外层的五个电子中,四个电子组成共价键,多出的一个电子受原子核束缚很小,因此很容易成为自由电子。所以这种半导体中,电子载流子的数目很多,主要靠电子导电,叫做电子半导体,简称n型半导体。
【p型半导体】“p”表示正电的意思。在这种半导体中,参与导电的主要是带正电的空穴,这些空穴来自于半导体中的“受主”杂质。所谓受主杂质就是掺入杂质能够接受半导体中的价电子,产生同数量的空穴,从而改变了半导体的导电性能。例如,半导体锗和硅中的三价元素硼、铟、镓等原子都是受主。如果某一半导体的杂质总量中,受主杂质的数量占多数,则这半导体是p型半导体。如果在单晶硅上掺入三价硼原子,则硼原子与硅原子组成共价键。由于硼原子数目比硅原子要少很多,因此整个晶体结构基本不变,只是某些位置上的硅原子被硼原子所代替。硼是三价元素,外层只有三个价电子,所以当它与硅原子组成共价键时,就自然形成了一个空穴。这样,掺入的硼杂质的每一个原子都可能提供一个空穴,从而使硅单晶中空穴载流子的数目大大增加。这种半导体内几乎没有自由电子,主要靠空穴导电,所以叫做空穴半导体,简称p型半导体。
【p-n结】在一块半导体中,掺入施主杂质,使其中一部分成为n型半导体。其余部分掺入受主杂质而成为p型半导体,当p型半导体和n型半导体这两个区域共处一体时,这两个区域之间的交界层就是p-n结。p-n结很薄,结中电子和和空穴都很少,但在靠近n型一边有带正电荷的离子,靠近p型一边有带负电荷的离子。这是因为,在p型区中空穴的浓度大,在n型区中电子的浓度大,所以把它们结合在一起时,在它们交界的地方便要发生电子和空穴的扩散运动。由于p区有大量可以移动的空穴,n区几乎没有空穴,空穴就要由p区向n区扩散。同样n区有大量的自由电子,p区几乎没有电子,所以电子就要由n区向p区扩散。随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区;n区电子减少,出现了一层带正电的粒子区。结果在p-n结的边界附近形成了一个空间电荷区,p型区一边带负电荷的离子,n型区一边带正电荷的离子,因而在结中形成了很强的局部电场,方向由n区指向p区。当结上加正向电压(即p区加电源正极,n区加电源负极)时,这电场减弱,n区中的电子和p区中的空穴都容易通过,因而电流较大;当外加电压相反时,则这电场增强,只有原n区中的少数空穴和p区中的少数电子能够通过,因而电流很小。因此p-n结具有整流作用。当具有p-n结的半导体受到光照时,其中电子和空穴的数目增多,在结的局部电场作用下,p区的电子移到n区,n区的空穴移到p区,这样在结的两端就有电荷积累,形成电势差。这现象称为p-n结的光生伏特效应。由于这些特性,用p-n结可制成半导体二极管和光电池等器件。如果在p-n结上加以反向电压(n区加在电源正极,p区加在电源负极),电压在一定范围内,p-n结几乎不通过电流,但当加在p-n结上的反向电压越过某一数值时,发生电流突然增大的现象。这时p-n结被击穿。p-n结被击穿后便失去其单向导电的性能,但结并不一定损坏,此时将反向电压降低,它的性能还可以恢复。根据其内在的物理过程,p-n结击穿可分为雪崩击穿和隧道击穿两种。由于p-n结具有这种特性,一方面可以用它制造半导体二极管,使之工作在一定电压范围之内作整流器等;另方面因击穿后并不损坏而可用来制造稳压管或开关管等器件。
【晶体二极管】亦称为“半导体二极管”。一种由半导体材料制成的,具有单向导电特性的两极器件。早期的半导体二极管是用金属丝尖端触在半导体晶片上制成的,称为点接触二极管,通常在较高的频率范围内作检波、混频器用。目前大多数的晶体二极管都是面结型的,它是由半导体晶片上形成的p-n结组成,或由金属同半导体接触组成,可用于整流,检波、混频、开关和稳压等。除一般用途的二极管外,还有一些用于特殊用途,利用特殊原理制成的二极管。例如:(1)肖特基二极管(又称为金属-半导体二极管):用某些金属和半导体相接触,在它们的交界面处便会形成一个势垒区(通常称为“表面势垒”或“肖特基势垒”),产生整流,检波作用。在这种二极管中,起导电作用的热运动能量比较大的那些载流子,所以又叫“热载流子二极管”。这种二极管比p-n结二极管有更高的使用频率和开关速度,噪声也比较低,但工作电流较小,反向耐压较低。目前它主要用作微波检波器和混频器,已在雷达接收机中代替了点接触二极管;(2)隧道二极管:它是一种具有负阻特性的半导体二极管。目前主要用掺杂浓度较高的锗或砷化镓制成。其电流和电压间的变化关系与一般半导体二极管不同。当某一个极上加正电压时,通过管的电流先将随电压的增加而很快变大,但在电压达到某一值后,忽而变小,小到一定值后又急剧变大;如果所加的电压与前相反,电流则随电压的增加而急剧变大。因为这种变化关系,只能用量子力学中的“隧道效应”加以说明,故称隧道二极管。它具有开关、振荡、放大等作用,应用在电子计算机和微波技术中;(3)变容二极管;它是利用p-n结的电容特性来实现放大、倍频、调谐等作用的一种二极管。由于它的结电容随外加电压而显著变化,所以称为“变容二极管”。制造变容二极管所用的半导体材料主要用硅和砷化镓。在作微波放大时,它的优点是具有很低的噪声;(4)雪崩二极管:亦称为“碰撞雪崩渡越时间二极管”。是一种在外加电压作用下可以产生超高频振荡的半导体二极管。它的工作原理是:利用p-n结的雪崩击穿在半导体中注入载流子,这些载流子渡越过晶片流向外电路。由于这一渡越需要一定的时间,因而使电流相对于电压出现一个时间延迟,适当控制渡越时间,在电流和电压的关系上会出现负阻效应,因而能够产生振荡。雪崩二极管主要用在微波领域作为振荡源;(5)发光二极管:一种在外加正向电压作用下可以发光的二极管。它的发光原理是:在正向电压作用下,p-n结中注入很多非平衡载流子,这些载流子复合时,多余的能量转化为光的形式发射出来。发光二极管经常用作电子设备中的指示灯、数码管等显示元件,也可用于光通讯。它的优点是工作电压低,耗电量小体积小、寿命长。制造发光二极管所用的半导体材料主要是磷砷化镓、碳化硅等。
【晶体三极管】 亦称为“半导体三极管”或简称“晶体管”。它是一种具有三个电极,能起放大、振荡或开关等作用的半导体器件。按工作原理不同,可分为结型晶体管和场效应晶体管。结型晶体管是在半导体单晶上制备两个p-n结,组成一个p-n-p(或n-p-n)的结构,中间的n型(或p型)区叫基区,边上两个区域分别叫发射区和集电区,这三部分都有电极与外电路联接,分别称为“发射极”以字母e表示、“基极”以字母b表示和“集电极”以字母c表示。在电子线路中,用符号代表p-n-p型和n-p-n型晶体管如图3-17所示。晶体管用作放大器时,在发射极和基极之间输入电信号,以其电流控制集电极和基极(或集电极和发射极)之间的电流,从而在负载上获得放大的电信号。同电子管相比晶体管具有体积小、重量轻、耐震动、寿命长,耗电小的优点,但受温度影响较大。目前常用的晶体管主要是用锗或硅晶体制成。场效应晶体管是利用输入电压的电场作用控制输出电流的一种半导体器件。场效应晶体管又分为结型场效应晶体管和金属—氧化物—半导体场效应晶体管两大类。金属—氧化物—半导体场效应晶体管简称为MOS晶体管,它的结构如图3-18所示,其中1为栅极;2为绝缘层;3为沟道;4为源;5为漏。制作过程为在n型(或p型)晶片上扩散生成两个p型(或n型)区,分别称为源和漏,从上面引出源极(接电压正端)和漏极(接负端),源和漏之间有一个沟道区,在它上面隔一层氧化层(或其它绝缘层)制作一层金属电极称为“栅极”。在场效应晶体管工作时,栅极电压的变化会引起沟道导电性能的变化,也就是说栅极电压变化控制了源漏之间的电流变化。场效应晶体管的特点是输入阻抗高和抗辐射能力强。
【集成电路】 它是一种微型电子器件或部件。是采用一定的工艺,把一个电路中所需要的晶体管、电阻、电容和电感等,制作在一小块或几小块晶片或陶瓷基片上,再用适当的方法进行互连而封装在一个管壳内,成为具有所需功能的微型电路结构。集成电路已打破了传统的电路设计概念,因为集成电路中的晶体管、二极管、电阻、电容、电感等各元件在结构上已组成一个整体,这样整个电路的体积大大缩小,且引出线和焊接点的数目也大大减少,从而使电子元件向着微小型化,低功耗和高可靠性方面迈进了一大步。用集成电路来装配电子设备,其装配密度比用分立式晶体管等元器件组装的电子设备提高几十倍到上百倍,设备的稳定工作时间也可大大提高。因此集成电路在电子计算机、通讯设备、导d、雷达、人造卫星和各种遥控、遥测设备中占据了非常重要的地位。根据制造工艺的不同,目前集成电路主要有半导体集成电路、薄膜集成电路、厚膜集成电路和混合集成电路等几类。根据性能和用途的不同,又可分为数字集成电路、线性集成电路和微波集成电路等。近年来集成电路的发展极为迅速。早期半导体集成电路的集成度是每个晶片上只有几十个元件,目前集成度已高达每片包含几千个甚至上万个元件。习惯把由一百个以上的门电路或一千个以上的晶体管集成在一块晶片上,并互连成具有一个系统或一个分系统功能的电路称为“大规模集成电路”。
【半导体集成电路】 亦称“固体电路”或“单块集成电路”,它是在一块半导体单晶片(一般是硅片)上,用氧化、扩散或离子注入,光刻、蒸发等工艺做成晶体管、二极管、电阻和电容等元件,并用某种隔离技术使它们在电性能上互相绝缘,而在晶片表面用金属薄膜使有关元件按需要互相连接,最后被封装在一个管壳里而构成一个完整电路。半导体集成电路制造方法比较简便,成本低廉、可靠性高、体积也比较小,是目前集成电路中生产和应用最多的一种
电池[diàn chí]电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,能将化学能转化成电能的装置。具有正极、负极之分。随着科技的进步,电池泛指能产生电能的小型装置。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。利用电池作为能量来源,可以得到具有稳定电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并且电池结构简单,携带方便,充放电 *** 作简便易行,不受外界气候和温度的影响,性能稳定可靠,在现代社会生活中的各个方面发挥有很大作用。
在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。
极化的原因有三:
①由电池中各部分电阻造成的极化称为欧姆极化;
②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;
③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。
电池分类编辑
燃料电池
燃料电池是一种将燃料的化学能透过电化学反应直
燃料电池
接转化成电能的装置燃料电池是利用氢气在阳极进行的是氧化反应,将氢气氧化成氢离子,而氧气在阴极进行还原反应,与由阳极传来的氢离子结合生成水。氧化还原反应过程中就可以产生电流。燃料电池的技术包括了出现碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)、熔融碳酸盐燃料电池(MCFC)、固态氧化物燃料电池(SOFC),以及直接甲醇燃料电池(DMFC)等,而其中,利用甲醇氧化反应作为正极反应的燃料电池技术,更是被业界所看好而积极发展。
干电池
常用的一种是碳-锌干电池。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH4+)得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。铅蓄电池最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。两极板均覆盖有硫酸铅。但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。放电时,则发生反方向的化学反应。
铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄电池是否需要充电或者充电过程是否可以结束。铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一
蓄电池
种不稳定的物质——氢氧化铅〔Pb(OH4〕)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐
铅晶蓄电池
减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。采用新型铅合金和电解液添加纳米碳溶胶,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅,则可减少自放电和满足密封的需要。此外,开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。
铅晶蓄电池
铅晶蓄电池应用的是专有技术,所采用的高导硅酸盐电解质是传统铅酸电池电解质的复杂性改型,无酸雾内化成工艺是定型工艺的革新。这些技术工艺均属国内外首创,该产品在生产、使用及废弃物中都不存在污染问题,更符合环保要求,由于铅晶蓄电池用硅酸盐取代硫酸液作电解质,从而克服了铅酸电池使用寿命短,不能大电流充放电的一系列缺点,更加符合动力电池的必备条件,铅晶电池也必将对动力电池领域产生巨大的推动作用。
铁镍蓄电池
也叫爱迪生电池。铅蓄电池是一种酸性蓄电池,与之不同,铁镍蓄电池的电解液是碱性的氢氧化钾溶液,是一种碱性蓄电池。其正极为氧化镍,负极为铁。电动势约为1.3~1.4伏。其优点是轻便、寿命长、易保养,缺点是效率不高。
镍镉蓄电池
正极为氢氧化镍,负极为镉,电解液是氢氧化钾溶液。
其优点是轻便、抗震、寿命长,常用于小型电子设备。
银锌蓄电池
正极为氧化银,负极为锌,电解液为氢氧化钾溶液。
银锌蓄电池的比能量大,能大电流放电,耐震,用作宇宙航行、人造卫星、火箭等的电源。充、放电次数可达约100~150次循环。其缺点是价格昂贵,使用寿命较短。
燃料电池
一种把燃料在燃烧过程中释放的化学能直接转换成电
能的装置。与蓄电池不同之处,是它可以从外部分别向两个电极区域连续地补充燃料和氧化剂而不需要充电。燃料电池由燃料(例如氢、甲烷等)、氧化剂(例如氧和空气等)、电极和电解液等四部分构成。其电极具有催化性能,且是多孔结构的,以保证较大的活性面积。工作时将燃料通入负极,氧化剂通入正极,它们各自在电极的催化下进行电化学反应以获得电能。
燃料电池把燃烧反应所放出的能量直接转变为电能,所以它的能量利用率高,约等于热机效率的2倍以上。此外它还有下述优点:①设备轻巧;②不发噪音,很少污染;③可连续运行;④单位重量输出电能高等。因此,它已在宇宙航行中得到应用,在军用与民用的各个领域中已展现广泛应用的前景。
太阳电池
把太阳光的能量转换为电能的装置。当日光照射时,产生端电压,得到电流,用于人造卫星、宇宙飞船中的太阳电池是半导体制成的(常用硅光电池)。日光照射太阳电池表面时,半导体PN结的两侧形成电位差。其效率在百分之十以上,典型的输出功率是5~10毫瓦每平方厘米(结
温差电池
两种金属接成闭合电路,并在两接头处保持不同温度时,产生电动势,即温差电动势,这叫做塞贝克效应(见温差电现象),这种装置叫做温差电偶或热电偶。金属温差电偶产生的温差电动势较小,常用来测量温度差。但将温差电偶串联成温差电堆时,也可作为小功率的电源,这叫做温差电池。用半导体材料制成的温差电池,温差电效应较强。
核电池
把核能直接转换成电能的装置(核发电装置是利用核裂变能量使蒸汽受热以推动发电机发电,还不能将核裂变过程中释放的核能直接转换成电能)。通常的核电池包括辐射β射线(高速电子流)的放射性源(例如锶-90),收集这些电子的集电器,以及电子由放射性源到集电器所通过的绝缘体三部分。放射性源一端因失去负电成为正极,集电器一端得到负电成为负极。在放射性源与集电器两端的电极之间形成电位差。这种核电池可产生高电压,但电流很小。它用于人造卫星及探测飞船中,可长期使用。
原电池
经一次放电(连续或间歇)到电池容量耗尽后,不能再有效地用充电方法使其恢复到放电前状态的电池。特点是携带方便、不需维护、可长期(几个月甚至几年)储存或使用。原电池主要有锌锰电池、锌汞电池、锌空气电池、固体电解质电池和锂电池等。锌锰电池又分为干电池和碱性
制造最早而至今仍大量生产的原电池。有圆柱型和叠层型两种结构。其特点是使用方便、价格低廉、原材料来源丰富、适合大量自动化生产。但放电电压不够平稳,容量受放电率影响较大。适于中小放电率和间歇放电使用。新型锌锰干电池采用高浓度氯化锌电解液、优良的二氧化锰粉和纸板浆层结构,使容量和寿命均提高一倍,并改善了密封性能。
碱性锌锰电池
以碱性电解质代替中性电解质的锌锰电池。有圆柱型和钮扣型两种。这种电池的优点是容量大,电压平稳,能大电流连续放电,可在低温(-40℃)下工作。这种电池可在规定条件下充放电数十次。
锌汞电池
由美国S.罗宾发明,故又名罗宾电池。是最早发明的小型电池。有钮扣型和圆柱型两种。放电电压平稳,可用作要求不太严格的电压标准。缺点是低温性能差(只能在0℃以上使用),并且汞有毒。锌汞电池已逐渐被其他系列的电池代替。
锌空气电池
以空气中的氧为正极活性物质,因此比容量大。有碱性和中性两种系列,结构上又有湿式和干式两种。湿式电池只有碱性一种,用NaOH为电解液,价格低廉,多制成大容量(100安·小时以上)固定型电池供铁路信号用。干式电池则有碱性和中性两种。中性空气干电池原料丰富、价格低廉,但只能在小电流下工作。碱性空气干电池可大电流放电,比能量大,连续放电比间歇放电性能好。所有的空气干电池都受环境湿度影响,使用期短,可靠性差,不能在密封状态下使用。
固体电解质
以固体离子导体为电解质,分高温、常温两类。高温的有钠硫电池,可大电流工作。常温的有银碘电池,电压0.6伏,价格昂贵,尚未获得应用。已使用的是锂碘电池,电压2.7伏。这种电池可靠性很高,可用于心脏起搏器。但这种电池放电电流只能达到微安级。
碱性电池
碱性电池是最成功的高容量干电池,也是目前最具性能价格比的电池之一。碱性电池是以二氧化锰为正极,锌为负极,氢氧化钾为电解液。其特性上较碳性电池来的优异,电容量大。
化学方程式为:Zn+2MnO2+2H2O==2MnOOH+Zn(OH)2结构
锂电池
以锂为负极的电池。它是60年代以后发展起来
锂电池
的新型高能量电池。按所用电解质不同分为:①高温熔融盐锂电池;②有机电解质锂电池;③无机非水电解质锂电池;④固体电解质锂电池;⑤锂水电池。锂电池的优点是单体电池电压高,比能量大,储存寿命长(可达10年),高低温性能好,可在-40~150℃使用。缺点是价格昂贵,安全性不高。另外电压滞后和安全问题尚待改善。大力发展动力电池和新的正极材料的出现,特别是磷酸亚铁锂材料的发展,对锂电发展有很大帮助。
储备电池
有两种激活方式,一种是将电解液和电极分开存放,使用前将电解液注入电池组而激活,如镁海水电池、储备式铬酸电池和锌银电池等。另一种是用熔融盐电解质,常温时电解质不导电,使用前点燃加热剂将电解质迅速熔化而激活,称为热电池。这种电池可用钙、镁或锂合金为负极,KCl和LiCl的低共熔体为电解质,CaCrO4.PbSO4或V2O5等为正极,以锆粉或铁粉为加热剂。采用全密封结构可长期储存(10年以上)。
标准电池
最著名的是惠斯顿标准电池,分饱和型和非饱和型两种。其标准电动势为1.01864伏(20℃)。非饱和型的电压温度系数约为饱和型的1/4。
7干电池编辑
一节干电池是最常用的类型,一节干电池从湿细胞是不同的,因为它们的电解质中都包含在低水分膏,而湿细胞具有在液体中所含的电解质,因此有名称的差异。电池内的化学反应产生带电的电荷,从内侧流动到外电路,该电路被连接到一个电气设备。
糊式锌
由锌筒、电糊层、二氧化锰正极、炭棒、铜帽等组成。最外面的一层是锌筒,它既是电池的负极又兼作容器,在放电过程中它要被逐渐溶解;中央是一根起集流作用的碳棒;紧紧环绕着这根碳棒的是一种由深褐色的或黑色的二氧化锰粉与一种导电材料(石墨或乙炔黑)所构成的混合物,它与碳棒一起构成了电池的正极体,也叫炭包。为避免水分的蒸发,干电池的上部用石蜡或沥青密封。锌-锰干电池工作时的电极反应为锌极:Zn→Zn2++2e
纸板式锌
在糊式锌-锰干电池的基础上改进而成。它以厚度为70~100微米的不含金属杂质的优质牛皮纸为基,用调好的糊状物涂敷其表面,再经过烘干制成纸板,以代替糊式锌-锰干电池中的糊状电解质层。纸板式锌-锰干电池的实际放电容量比普通的糊式锌-锰干电池要高出2~3倍。标有“高性能”字样的干电池绝大部分为纸板式。
碱性锌
其电解质由汞齐化的锌粉、35%的氢氧化钾溶液再加上一些钠羧甲基纤维素经糊化而成。由于氢氧化钾溶液的凝固点较低、内阻小,因此碱性锌-锰干电池能在-20℃温度下工作,并能大电流放电。碱性锌-锰干电池可充放电循环40多次,但充电前不能进行深度放电(保留60%~70%的容量),并需严格控制充电电流和充电期终的电压。
叠层式锌
由几个结构紧凑的扁平形单体电池叠在一起构成。每一个单体电池均由塑料外壳、锌皮、导电膜以及隔膜纸、炭饼(正极)组成。隔膜纸是一种吸有电解液的表面有淀粉层的浆层纸,它贴在锌皮的上面;隔膜纸上面是炭饼。隔膜纸如同糊式干电池的电糊层,起隔离锌皮负极和炭饼正极的作用。叠层式锌-锰干电池减去了圆筒形糊式干电池串联组合的麻烦,其结构紧凑、体积小、体积比容量大,但贮存寿命短且内阻较大,因而放电电流不宜过大。
碱性蓄电池
与同容量的铅蓄电池相比,其体积小,寿命长,能大电流放电,但成本较高。碱性蓄电池按极板活性材料分为铁镍、镉镍、锌银蓄电池等系列。以镉镍蓄电池为例,碱性蓄电池的工作原理是:蓄电池极板的活性物质在充电后,正极板为氢氧化镍〔Ni(OH)3〕,负极板为金属镉(Cd);而放电终止时,正极板转变为氢氧化亚镍〔Ni(OH)2〕,负极板转变为氢氧化镉〔Cd(OH)2〕,电解液多选用氢氧化钾(KOH)溶液。
空气电池
以空气中的氧气作为正极活性物质,金属作为负极活性物质的一种高能电池。使用的金属一般是镁、铝、锌、镉、铁等;电解质为水溶液。其中锌-空气电池已成为成熟的产品。
金属-空气电池具有较高的比能量,这是因为空气不计算在电池的重量之内。锌-空气电池的比能量是现生产的电池中最高的,已达400瓦·小时/千克(Wh/kg),是一种高性能中功率电池,并正向高功率电池的方向发展。生产的金属-空气电池主要是一次电池;研制中的二次金属-空气电池为采用更换金属电极的机械再充电电池。由于金属-空气电池工作时要不断地供应空气,因此它不能在密封状态或缺少空气的环境中工作。此外,电池中的电解质溶液易受空气湿度的影响而使电池性能下降;空气中的氧会透过空气电极并扩散到金属电极上,形成腐蚀电池引起自放电。
锂锰电池
* 大功率型:
o CR14250SL; CR14335SL; CR14505SL; CR2SL; CR123ASL;
o CR17285SL; CR17335SL; CR17450SL; CR17505SL; CR17505SL;
o CR18505SL; CR20505SL; CR26500SL; CR26600SL; CR34615SL;
o 2C
* 标称电压:3.0V
* 容量
* 结构: 螺旋结构,激光密封。最适用于高电流放电持续以及脉冲电流
* 大容量类型:
o CR14250BL; CR14335BL; CR14505BL; CR17335BL; CR17450BL
* 线轴结构,激光密封
* 适合低电流长期使用
纳米电池
纳米即10^(-9)米,纳米电池即用纳米材料(如纳米MnO2,LiMn2O4,Ni(OH)2等)制作的电池,纳米材料具有特殊的微观结构和物理化学性能(如量子尺寸效应,表面效应和隧道量子效应等。目前国内技术成熟的纳米电池是纳米活性碳纤维电池。主要用于电动汽车,电动摩托,电动助力车上。该种电池可充电循环1000次,连续使用达10年左右一次充电只需20分钟左右,平路行程达400km,重量在128kg,已经超越美日等国的电池汽车水平。它们生产的镍氢电行程300km。
磷酸铁锂电池
磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是绝大多数锂离子电池使用的正极材料,而其它正极材料由于多种原因,在市场上还没有大量生产。磷酸铁锂也是其中一种锂离子电池。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。磷酸铁锂电池具有超长寿命、使用安全、可大电流快速放电、耐高温、大容量、无记忆效应、体积小、重量轻、绿色环保等诸多优点;因此该电池又列入了“十五”期间的“863”国家高科技发展计划,成为国家重点支持和鼓励发展的项目。
水果电池
两种金属片的电化学活性是不一样的,其中更活泼的那边的金属片能置换出水果中的酸性物质的氢离子,由于产生了正电荷,整个系统需要保持稳定,所以在组成原电池的情况下,由电子从回路中保持系统的稳定,这样的话理论上来说电流大小直接和果酸浓度相关,在此情况下,如果回路的长度改变,势必造成回路的改变,所以也会造成电压的改变。
8各种型号编辑
一般分为:1.2.3.5.7号,其中5号和7号尤为常用,所谓的AA电池就是5号电池,而AAA电池就是7号电池。
额定电压为1.5V
各电池具体外型尺寸 (mm)如下:
1
D型电池(大号电池/LR20/AM1) 直径ф34.2; 高度61.5mm
2
C型电池(2号电池/LR14/AM2) 直径ф26.2; 高度50.0mm
3
AA型电池(5号电池/LR6/AM3) 直径ф14.5; 高度50.5mm
4
AAA型电池(7号电池/LR03/AM4) 直径ф10.5; 高度44.5mm
5
AA/2型电池(8号电池LR1/AM5) 直径ф11.0; 高度30.0mm
6
AAAA型电池(9号电池/LR61/AM6) 直径ф8.0; 高度39.5mm
7
AAAA/2型电池(小9号电池/LR61/AM6) 直径ф8.0; 高度28.0mm
其他型号
说说常见的“AAAA,AAA,AA,A,SC,C,D,N,F”这些型号
AAAA型号少见,一次性的AAAA劲量碱性电池偶尔还能见到,一般是电脑笔里面用的。标准的AAAA(平头)电池高度41.5±0.5mm,直径8.1±0.2mm。
AAA型号电池就比较常见,以前的MP3用的多是AAA电池,标准的AAA(平头)电池高度43.6±0.5mm,直径10.1±0.2mm。
AA型号电池就更是尽人皆知,数码相机,电动玩具都少不了AA电池,标准的AA(平头)电池高度48.0±0.5mm,直径14.1±0.2mm。
只用一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。
SC型号也不常见,一般是电池组里面的电池芯,多在电动工具和摄像机以及进口设备上能见到,标准的SC(平头)电池高度42.0±0.5mm,直径22.1±0.2mm。
C型号也就是二号电池,标准的C(平头)电池高度49.5±0.5mm,直径25.3±0.2mm。
D型号就是一号电池,用途广泛,民用,军工,特异型直流电源都能找到D型电池,标准的D(平头)电池高度59.0±0.5mm,直径32.3±0.2mm。
N型号不常见,标准的N(平头)电池高度28.5±0.5mm,直径11.7±0.2mm。
F型号电池,电动助力车,动力电池的新一代产品,大有取代铅酸免维护蓄电池的趋势,一般都是作电池芯(个人见解:其实个太大,不好单独使用,呵呵)。标准的F(平头)电池高度89.0±0.5mm,直径32.3±0.2mm。
大家注意到,(平头)字样,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。以此类推。还有,电池很多的时候并不是规规矩矩的“AAA,AA,A,SC,C,D,N,F”这些主型号,前面还时常有分数“1/3,2/3,1/2,2/3,4/5,5/4,7/5”,这些分数表示的是池体相应的高度,例如“2/3AA”就是表示高是一般AA电池的2/3的充电电池;再如“4/5A”就是表示高是一般A电池的4/5的充电电池。
还有两种型号表示方法,是五位数字,例如,14500,17490,26500,前两位数字是指池体直径,后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高。
例如,505060AR,305060A ,其中前面两位数字是指厚,中间两位数是指宽 ,最后面两位数是指长。例如505060AR就是锂电池的5.0MM是厚, 宽是50MM,60MM是长。后缀AR是表示铝壳锂电池。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)