薄膜在线测厚仪的有哪些测量原理?

薄膜在线测厚仪的有哪些测量原理?,第1张

薄膜在线测厚仪的测量原理有4种:射线技术,X射线技术,近红外技术和光学透过率技术 2.1 射线技术射线技术是最先应用于在线测厚技术上的射线技术,在上世纪60年代就已经广泛用于超薄薄膜的在线厚度测量了。它对于测量物没有要求,但传感器对温度和大气压的变化、以及薄膜上下波动敏感,设备对于辐射保护装置要求很高,而且信号源更换费用昂贵,Pm147源可用5-6年,Kr85源可用10年,更换费用均在6000美元左右。2.2 X射线技术这种技术极少为塑料薄膜生产线所采用。X光管寿命短,更换费用昂贵,一般可用2-3年,更换费用在5000美元左右,而且不适用于测量由多种元素构成的聚合物,信号源放射性强。X射线技术常用于钢板等单一元素的测量。2.3 近红外技术近红外技术在在线测厚领域的应用曾受到条纹干涉现象的影响,但现在近红外技术已经突破了条纹干涉现象对于超薄薄膜厚度测量的限制,完全可以进行多层薄膜总厚度的测量,并且由于红外技术自身的特点,还可以在测量复合薄膜总厚度的同时给出每一层材料的厚度。近红外技术可用于双向拉伸薄膜、流延膜和多层共挤薄膜,信 号源无放射性,设备维护难度相对较低。  2.4光学涂层技术对于透光的材料,材料一定的情况下,透过率和测量的厚度成一一对应关系,所有通过测量材料的光学透过率(光密度)来达到测量材料厚度的目的,在卷绕式镀膜行业,如镀铝膜,各种包装膜,通过在线监测薄膜的透过率来在线监测生产的品质,已经是一种非常成熟的方案。如深圳市林上科技的LS152真空镀膜在线测厚仪就是利用光学透过率的原理来实现非接触式的在线测厚,该仪器支持RS485通讯接口和MODBUS通讯协议,可以与镀膜机上的PLC进行通讯实现闭环控制。

在P型半导体中空穴浓度较高,在N型半导体中电子浓度较高。两者结合在一起时,载流子将由高浓度区向低浓度区扩散,结果在两者附近形成一个结区,如图4-3-1所示。在结区基本上不存在自由载流子,只有施主和受主的离子,形成一个空间电荷区,N型一侧带正电,P型一侧带负电,构成一个内部电场,电场将阻止载流子继续扩散。如果在空间电荷区产生电离形成自由载流子,将立即把电子拉向N区,空穴拉向P区。不可能存在自由载流子,所以PN结区称为“耗尽层”。

当给PN外加电压,反向偏置时,即电源正端接N区,负极接P区,使空间电荷电场增强。

电子和空穴分别向正端和负端扩散,结果使“耗尽层”的宽度增大。

耗尽层即为探测器的灵敏区。在电压反向偏置下,耗尽层电阻率极高,相当于外加电压全加在耗尽层端;而P区和N区,自由载流子浓度很高,电阻率很低,相当于两个电极。

探测的射线进入灵敏区(耗尽层),产生电离,生成大量电子-空穴对。在电场作用下,电子和空穴分别迅速向正、负两极漂移、被收集,在输出电路中形成脉冲电信号。

金硅面垒半导体探测器就是以N型硅单晶作基片。将基片经酸处理后形成一氧化层,并在氧化层上镀一层金膜(约10nm厚)。在靠金膜的氧化层具有P型硅特性,在基片背面镀镍接电源正极,金膜与铜外壳接触接电源负极,氧化层构成PN结耗尽层为金硅面垒探测器的灵敏区。目前金硅面垒探测器灵敏区厚度最大可做到2mm。一般做成圆片状。

金硅面垒探测器,由于耗尽层厚度较薄,主要用于探测带电重粒子(如α、p等),亦可用作能谱测量,探测效率近于100%。也可用于β射线测量,对γ射线不灵敏。

几种常用金硅面垒探测器特性列于表4-3-1。

图4-3-1 PN结形成及其特性

a—PN结形成过程示意图;b—PN结特性示意图

(a)耗尽层(阴影区);(b)受主、施主、电子、空穴分布;(c)电子和空穴浓度;(d)施主和受主浓度;(e)净电荷分布;(f)静电电位分布;(g)外加反向偏压时受主、施主、电子和空穴的分布

表4-3-1 几种金硅面垒探测器主要特性

半导体材料的厚度与吸收光谱的关系。半导体导带和价带之间存在能隙(energy gap),当入射光的能量等于能隙时,入射光将会被材料大量吸收,因此会在能隙位置出现吸收峰,这是半导体材料吸收光谱的特征峰位置。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9227930.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存