1nm芯片不是极限。
1nm就是摩尔极限,也就是说,硅基芯片的极限精度理论上只能达到1nm,但由于自然环境的限制,其实际精度永远不可能达到1nm。
制程越小,功耗越小,在实现相同功能的情况下,发热小,电池可使用的时间更长。这就是芯片制程越来越小的主要原因。
台积电已经研发出了3nm芯片制造,本以为自己已经独占鳌头,却让人没有想到的是,近日英特尔突然宣布它们已经突破了芯片的摩尔极限,并且已经研发出三套方案,1nm不再是芯片精度的尽头。
发展:
芯片上有无数个晶体管,他们是芯片的核心,也就说,目前的技术是要把晶体管做的越来越小,这样,芯片上能容纳的晶体管就很多,芯片的性能就随之增加。
而目前最小的是1 nm栅极长度的二硫化钼晶体管。而且,并不是到1nm才会发生击穿效应,而是进入7nm节点后,这个现象就越来越明显了,电子从一个晶体管跑向另一个晶体管而不受控制,晶体管就丧失了原来的作用。
硅和二硫化钼(MoS2)都有晶体结构,但是,二硫化钼对于控制电子的能力要强于硅,众所周知,晶体管由源极,漏极和栅极,栅极负责电子的流向,它是起开关作用,在1nm的时候,栅极已经很难发挥其作用了,而通过二硫化钼,则会解决这个问题,而且,二硫化钼的介电常数非常低,可以将栅极压缩到1nm完全没有问题。
1nm是人类半导体发展的重要节点,可以说,能不能突破1nm的魔咒,关乎计算机的发展,虽然二硫化钼的应用价值非常大,但是,目前还在早期阶段,而且,如何批量生产1nm的晶体管还没有解决,但是,这并不妨碍二硫化钼在未来集成电路的前景。
适用了20余年的摩尔定律近年逐渐有了失灵的迹象。从芯片的制造来看,7nm就是硅材料芯片的物理极限。不过据外媒报道,劳伦斯伯克利国家实验室的一个团队打破了物理极限,采用碳纳米管复合材料将现有最精尖的晶体管制程从14nm缩减到了1nm。那么,为何说7nm就是硅材料芯片的物理极限。
芯片的制造工艺常常用90nm、65nm、40nm、28nm、22nm、14nm来表示,比如Intel最新的六代酷睿系列CPU就采用Intel自家的14nm制造工艺。现在的CPU内集成了以亿为单位的晶体管,这种晶体管由源极、漏极和位于他们之间的栅极所组成,电流从源极流入漏极,栅极则起到控制电流通断的作用。
而所谓的XX nm其实指的是,CPU的上形成的互补氧化物金属半导体场效应晶体管栅极的宽度,也被称为栅长。
栅长越短,则可以在相同尺寸的硅片上集成更多的晶体管——Intel曾经宣称将栅长从130nm减小到90nm时,晶体管所占得面积将减小一半;在芯片晶体管集成度相当的情况下,使用更先进的制造工艺,芯片的面积和功耗就越小,成本也越低。
栅长可以分为光刻栅长和实际栅长,光刻栅长则是由光刻技术所决定的。 由于在光刻中光存在衍射现象以及芯片制造中还要经历离子注入、蚀刻、等离子冲洗、热处理等步骤,因此会导致光刻栅长和实际栅长不一致的情况。另外,同样的制程工艺下,实际栅长也会不一样,比如虽然三星也推出了14nm制程工艺的芯片,但其芯片的实际栅长和Intel的14nm制程芯片的实际栅长依然有一定差距。
其实在各种芯片领域,所谓的物理极限都只是当时人们技术水平不够所导致的理论极限,就比如在若干年之前,当时研究硅基芯片的人难道会想到现在的硅基芯片能做成这样吗?时代是在进步的,人类的科技水平每日都在更新,硅基芯片的物理极限被不断被突破是一个非常正常的现象。
台积电作为硅基芯片领域的佼佼者,他们在硅基芯片在研究方面一直都是下了很多大功夫的,他们的制作工艺绝对是一般芯片公司无法比拟的。像芯片这种东西,所要求的制作工艺是非常的高,指甲盖大小的芯片需要集成几十万甚至上百万的晶体管,这个数字与芯片的精细程度息息相关,虽然芯片的制作过程大概只分为设计、制造、封装和检测,可这小小四个过程,却是难倒了无数人,理论知识大家都可以学到,但实际 *** 作却只能通过一次又一次的失败来获取经验。
制作一个芯片最重要的设备就是光刻机,而顶级的光刻机技术又在荷兰的ASML公司,一般人是绝对买不到这么高级的光刻机,但台积电公司可不是一般人,他们所能获取的设备说不定比现在明面上的还要更高级,而且他们是有自己的设备研究室,大多时候会将市面上的机器购买回来重新研究,随后自己改装设计出更为高级的设备,想要做出好的芯片,自然而然是得有最高级的设备,而台积电在这点方面绝对是完全具备的。
再来是芯片制造中非常重要的一个材质问题,好的材质才能造出好的芯片,特别是制造硅基芯片所需要的硅基材料,当初的人之所以会认为7纳米是硅基材料芯片的物理极限,是根据摩尔定律和各种物理法则进行计算得出,因为以当时的工艺水平和材料水准就只能造出7纳米的硅基芯片,不过现在人们已经制造出了更为高级的芯片制造设备,也发现了更适合的硅基材料,二者相互叠加之后,突破原本的硅基芯片七纳米极限也是可以理解的事情。
硅基芯片7纳米的物理极限是通过物理公式和摩尔定律计算出来的,而现在也证实了这个物理极限并不是真正的极限,7纳米的硅基芯片都已经投入工业化生产了,而5纳米的芯片则已经有了真正的样本,台积电现在是公开表示他们会做出更薄的芯片,三纳米两纳米甚至是更低,不过到那时所需要的设备和材料又是我们无法想象的了。
随着人类的工艺进程不断突破物理上的极限,人类的制造工艺也会达到一个又一个新的标准,不想被时代抛弃的话,只能不断的自我进步,芯片绝对是世界上一个经久不衰的领域,这个领域的突破是可以直接代表了人类在科技水平上的突破。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)