从科技或是经济发展的角度来看,半导体非常重要。很多电子产品,如计算机、移动电话、数字录音机的核心单元都是利用半导体的电导率变化来处理信息。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
硅基半导体自旋量子比特以其长量子退相干时间和高 *** 控保真度,以及与现代半导体工艺技术兼容的高可扩展性,成为量子计算研究的核心方向之一。
锗、硅、硒、砷化镓、许多金属氧化物和金属硫化物等。其导电性介于导体和绝缘体之间的半导体称为半导体。半导体有一些特殊的性质。例如,可以利用半导体的电阻率与温度的关系来制作热敏元件(热敏电阻),用于自动控制;利用其光敏特性,可制成光敏元件用于自动控制,如光电池、光电池、光敏电阻等。
半导体还有一个最重要的特性。如果在纯半导体物质中适当掺入少量杂质,其电导率将增加数百万倍。这一特性可用于制造各种半导体器件,如半导体二极管、三极管等。
当半导体的一面做成P型区,另一面做成N型区时,在结附近形成一层具有特殊性质的薄层,一般称为PN结。图的上半部分分为P型半导体和N型半导体界面两侧的载流子扩散(用黑色箭头表示)。中间部分是PN结的形成过程,表示载流子的扩散效应大于漂移效应(蓝色箭头表示,红色箭头表示内建电场方向)。下部是PN结的形成。代表扩散和漂移之间的动态平衡。
在元素周期表中金属和非金属的分界处,可以找到半导体材料,如硅、锗、镓等另外还有半导体的特性:
半导体是导电能力介于导体和绝缘体之间的物质.它的重要特性表现在以下几个方面:
(1)热敏性 半导体材料的电阻率与温度有密切的关系.温度升高,半导体的电阻率会明显变小.例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半.
(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了.例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧.半导体受光照后电阻明显变小的现象称为“光导电”.利用光导电特性制作的光电器件还有光电二极管和光电三极管等.
近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能.目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管.
另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源.
(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化.例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米.因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)