12.半导体激光器在使用时为什么要有控制电路?如果不加控制电路,系统会如何?

12.半导体激光器在使用时为什么要有控制电路?如果不加控制电路,系统会如何?,第1张

半导体光源3——半导体激光器的结构、工作原理和工作特性

Nikki

半导体激光器的结构、工作原理和工作特性

半导体的基本概念

(1) 本征半导体的能带分布

本征半导体就是指没有任何外来杂质的理想半导体。

由于半导体本身是固体,原子排列紧密,使得电子轨道相互重叠,从而使半导体的分立能级形成了能带。

本证半导体的能带分布从上到下依次为导带、(禁带)、价带、满带。

满带:电子填充能带时,总是从能量最低的能带向上填充,能量最低的满带被电子占满不能移动,电子移动形成电流,故满带中的电子不起导电作用。

价带:可能被电子占满,也可能被占据一部分。

禁带Eg:禁止电子在此区域停留,但可以穿越此区域。由于本征半导体是一个统一的热平衡系统,我们知道,对一个物质来说,如果是一个统一的热平衡系统的话,它就有一个费米能级Ef。对本征半导体这种材料,它的费米能级处于导带和价带之间的禁带区域中。

导带:其中的电子具有导电作用(空间大,电子可以自由移动)。

(2) P型半导体和N型半导体的形成

如果向本征半导体内掺入不同杂质元素,则相当于给半导体材料提供导电的电子或空穴。

将向本征半导体材料掺入提供电子的杂质元素后而形成的半导体材料称为N型半导体,它属于电子导电型;

将向本征半导体材料掺入提供空穴的杂质元素后而形成的半导体材料称为P型半导体,它属于空穴导电型。

(3) P-N结的形成

当P型半导体和N型半导体结合在一起时,即形成P-N结。由于相互间的扩散作用,使得靠近界面的地方,N区剩下带正电的离子,P区剩下带负电的离子,在结区形成空间电荷区。

由于空间电荷区的存在,出现了一个由N指向P的电场,称为内建电场。

在内建电场的作用下,由于电子向P区移动,在结区内,使得P区的电子电位能相对于N区提高。(电子点位能越高,实际指的是越负)

作为半导体材料,我们说其有三个能带,导带、(禁带)、价带、满带。按上图所示,粉色线以上是导带,绿色线以下是价带,再往下是满带,绿色线和粉色线之间的区域是禁带。

由于内建电场的作用下, P区的电子电位高于N区,此时的P-N结是一个热平衡系统,会有一个统一的费米能级,就是图中所示的虚线,在N型半导体中,费米能级在粉色线以上,在P型半导体中,费米能级在价带中。

根据费米能级的意义,其指的是物质中粒子分布情况的一个参量,比费米能级高的导带中粒子数少,而比费米能级低的导带中粒子数多,禁带中不存在电子。由此形成了P-N结的能带分布。

但是,此时P-N结的能带分布仍然是一个正常的物质分布状态,并没有被激活使之处于粒子数的反转分布状态,所以还不能发激光。

激活:当给P-N结外加正向偏压(即P接正、N接负)后,抵消了一部分内建电场的作用,P区的空穴和N区的电子不断注入P-N结,破坏了原来的热平衡状态,在P-N结出现了两个费米能级。此时,N型半导体中的费米能级还是在导带里,而P型半导体的费米能级还是在价带以下。

此时,在P-N结中(即中间区域),导带中低于费米能级的粒子数多,而价带中高于费米能级的粒子数少。如果把P-N结作为一个统一的整体,对P-N结来说,高能级的电子数反而多,低能级的电子数反而少,处于粒子数的反转分布状态。此时的P-N结就被激活了,这时候,如果外来的光子一激发,就会出现受激辐射的过程大于受激吸收的过程,从而实现光的放大。

半导体激光器的工作原理

当P-N结外加正向偏压足够大时,将使得结区处于粒子数的反转分布状态,在外来光子的激发下,即出现受激辐射>受激吸收→产生光的放大

被放大的光在由P-N结构成的光学谐振腔(谐振腔的两个反射镜是由半导体材料的天然解理面形成)中来回反射,不断增强,当满足阈值条件(不断放大的光要能抵消损耗,才有多余的光输出形成激光,G=α)后可发出激光。

半导体激光器的结构

用半导体材料作为激活物质的激光器,称为半导体激光器。

在半导体激光器中,从光振荡的形式上来看,主要有两种方式构成的激光器:

(1) 用天然解理面形成的F-P腔(法布里-珀罗谐振腔),称为F-P腔激光器;

F-P腔激光器从结构上又可分为:

1、 同质结半导体激光器

是一种结构最简单的半导体激光器,其核心部分是一个P-N结,由结区发出激光。它不能在室温下连续工作,只有异质结半导体激光器才能进入实用。

注:“结”是由不同的半导体材料制成的。

2、 单异质结半导体激光器

3、 双异质结半导体激光器

(2) 分布反馈型(DFB)激光器。

半导体激光器的工作特性

1、 阈值特性

对于半导体激光器来说,当外加正向电流达到某一值时,输出光功率将急剧增加,这时将产生激光振荡,这个电流值称为阈值电流,用It表示。

阈值特性可以用输入输出特性曲线进行表示。我们知道,激光器是将电信号变为光信号的器件,因此它的输入我们可以用工作电流来表示,输出可以用输出光功率来表示。

在转换过程中,当我们给半导体激光器加入电流时,这时候是可以发光的,但是这时候的光比较弱。如果我们继续增大工作电流,当增加到某一个值的时候,输出光功率会突然增加,也就是说,它有一个拐点,从发出比较弱的光到发出比较强的光中间有一个拐点,这个拐点,我们就称为阈值电流。这个阈值电流是用来衡量激光器什么时候发激光的一个电流值,如果外加正向电流小于阈值电流,这时候激光器也会发光,但是发出来的光很弱,属于荧光,只有当外加正向电流超过阈值电流,这时候激光器发出来的光才属于激光。

为了使光纤通信系统稳定可靠地工作,It越小越好。

2、 光谱特性

当I<It,荧光,光谱宽,光强弱

当I>It,激光,光谱窄(光谱窄,所包含的频率成分少,把这样的光注入到光纤中传输时,产生的色散就会减小,色散小了信号的失真也小,更有利于提高传输特性),光强强(信号传输可以更远)

单模激光器

发出的激光是单纵模,它所对应的的谱线只有一根谱线。

多模激光器

发出的集光是多纵模,对应的是多谱线。

根据谐振频率的公式 ,q取一个值的时候对应的频率称为单纵模,而多纵模是会同时发出多个q对应的频率,很显然单模激光器的特性会比多模好。

单模激光器与多模激光器的输出光谱图

一般,在观测激光器光谱特性时,光谱曲线最高点所对应的波长为中心波长,而比最高点功率低3dB时曲线上的宽度为谱线宽度。

3、 温度特性

激光器的阈值电流和光输出功率随温度变化的特性为温度特性。

当温度增加时,阈值电流增加,输出光功率下降

当温度降低时,阈值电流下降,输出光功率上升

为了使光纤通信系统稳定、可靠地工作,一般都要采用各种自动温度控制电路来稳定激光器的阈值电流和输出光功率。

同时,随着使用时间的增加,阈值电流也会逐渐增大。

4、 转换效率

半导体激光器是把电功率直接转换成光功率的器件。

衡量转换效率的高低常用功率转换效率来表示:

功率转换效率 定义为:输出光功率与消耗的电功率之比。

其中,R——是与激光器的内部量子效率、激光波长和模式损耗有关的常数

V——是工作电压

——是阈值电流

I——是工作电流

半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。 半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。

一、实验目的

1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;

2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。

二、实验原理

光与物质的相互作用可以归结为光与原子的相互作用。爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。

假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。

激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。

如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。激光就是受激辐射过程产生的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9228411.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存