什么是电子特气呢?电子气体是指用于半导体及相关电子产品生产的特种气体。
通常半导体生产行业,将气体划分成常用气体和特殊气体两类。其中,常用气体指集中供给而且使用非常 多的气体,比如 N2、H2、O2、Ar、He 等。特种气体指半导体生产环节中,比如延伸、离子注进、掺和、洗涤、遮掩膜形成过程中使用到一些化学气体,也就是我们现在所说的电子特气,比如高纯度的 SiH4、PH3、AsH3、B2H6、N2O、NH3、SF6、NF3、CF4、BCl3、BF3、HCl、Cl2等,
电子特气按其本身化学成分可分为:硅系、砷系、磷系、硼系、金属氢化物、卤化物和金属烃化物七类。按在集成电路中不同应用途径可分为掺杂用气体、外延用气体、离子注入气、发光二极管用气、刻蚀用气体、化学气相沉积气和平衡气。在半导体工业中应用的有110余种单元特种气体,其中常用的有超过30种。
除了半导体产业,电子特气广泛应用于太阳能电池、移动通讯、 汽车 导航及车载音像系统、航空航天、军事工业等诸多领域,所以也被称为电子工业的“血液”。
可以说,如果想要发展半导体产业,电子特气不可或缺。电子特气贯穿半导体各步工艺制程,尤其在半导体薄膜沉积环节发挥不可取代的作用,是形成薄膜的主要原材料之一。又决定了集成电路的性能、集成度、成品率,特气若不合格轻则导致产品严重缺陷,重则导致整条生产线被污染乃至全面瘫痪。
在半导体领域,电子特气在半导体制造的材料成本中占比高达 13%,是仅次于硅片的第二大材料。之所以成本如此高,是因为电子特气的技术难度不低。
电子特气对纯度的要求很高,因为纯度如果没有达到要求的话,电子特气中水汽、氧等杂质组就容易使半导体表面生成氧化膜,影响电子器件的使用寿命,而电子特气中含有的颗粒杂质会造成半导体短路及线路损坏。可以说纯度的提高,对电子器件生产的良率和性能起到了至关重要的作用。
伴随半导体工业的不断发展,芯片制程不断提高,如今已经做到了5nm,快要逼近摩尔定律的极限,,相当于头发丝直径(约为0.1毫米)的二万分之一。所以这也对半导体生产的电子特气纯度亦提出了更高的要求。
电子特气纯度提升的影响因素主要包括“气体的分离和提纯”、“气体杂质检测和监控”、“气体的运输和储存”三个方面,以“气体的运输和储存”为例,高纯特气在储存和运输过程中要求使用高质量的气体包装储运容器、以及相应的气体输送管线、阀门和接口,确保避免二次污染,而且一些电子特气还具有自燃性、腐蚀性、毒性等,所以运输和存储都要特别小心。
目前全球特气市场包括美国空气化工、普莱克斯、德国林德集团、法国液化空气、日本大阳日酸株式会社等公司占据了全球电子特气90%以上的市场份额。国内市场也被这几大企业控制了85%的份额。
随着中国对半导体产业的扶持加大,芯片国产化率的不断提高,电子特气也要跟上步伐,能够做到自给自足。
以昊华 科技 为例,是国内唯一具有4N高纯硒化氢产品研制及批量生产能力的企业。高纯硒化氢产品填补了国内空白,指标达到国外先进水平。此外,它们企业的特种气体产品还包括绿色四氧化二氮、高纯硫化氢、二氧化碳-环氧乙烷混合气(熏蒸剂)、标准混合气体等。昊华 科技 与韩国大成合作建设的 2,000 吨/年三氟化氮项目,广泛应用于蚀刻、清洗、 离子注入等半导体生产工艺。
目前,昊华 科技 部分产品已实现 进口替代。公司工业级六氟化硫国内市占率约为 30%,电子级六氟 化硫市占率约为 70%,三氟化氮市占率约为 30%。
但目前的难题是,电子特气种类太多,如果要全部做到高端化,难度比较高,目前也缺乏领军型的企业。
2014年,国家集成电路产业投资基金成立,首期募集资金规模达1387亿元。基金二期募资于2019年完成,募资2000亿,也就是目前中国共募资3387亿,对设备制造、芯片设计和材料领域加大投资。
中国也立下了宏伟目标,明确提出在2020年之前,90-32nm设备国产化率达到50%,2025年之前,20-14nm设备国产化率达到30%,而国产芯片自给率要在2020年达到40%,2025年达到70%。
国家目前也开始对电子特气领域进行投资扶持,可以说随着中国对半导体产业的不断重视,国产全面替代计划终会成功!
自从1877年德国慕尼黑工学院教授林德,发明设计出第一台以氨为制冷工质的制冷机以来,一百三十年来,其制冷技术原理与工艺方法一直沿革至今,没有什么原则性的改进与变化。所不同的只是改换了制冷工质,由氨换成了氟里昂,目前又由氟里昂换成非氟制冷工质。尽管其间还有人发明了半导体制冷、磁制冷、吸收式制冷,现有制冷技术的主流技术,仍然是林德发明的蒸气压缩式制冷技术。 物质有固体、液体、气体三种不同的相态。蒸气压缩式制冷主要利用液态制冷工质相变成气态时,需要大量吸收汽化潜热的物理特性进行制冷。 医生把酒精涂抹在患者的皮肤上,液态酒精从患者身体上吸收热量后汽化挥发,患者马上感觉到清凉,这就是制冷。 制冷工质汽化时的蒸发温度与其蒸发压力密切相关。以水为例,在1个大气压时,水的沸点为100℃;高原上的气压低于1个大气压,不到100℃时水就烧开了;做饭用的高压锅,达到1.2个大气压,水的沸点也就上升到120℃左右。 液态制冷工质吸热汽化的过程,完全可以是一个自动发生的过程,制冷工程师唯一需要解决的问题,是如何将已经汽化的制冷工质蒸气重新液化。 林德发明的蒸气压缩式制冷循环由制冷压缩机、冷凝器、节流阀、蒸发器四大部件构成。四大件由联接管道串联成一个闭合循环系统,内注制冷工质。 以氨为例,当蒸发器内的蒸气压力为1公斤/平方厘米时,液态氨在蒸发器内的蒸发温度为-33℃,制冷压缩机将氨蒸气从蒸发器吸走,并将其蒸气压力提高到20公斤/平方厘米。对应于20公斤/平方厘米的蒸气压力,氨气的液化温度为50℃左右。当气温低于50℃时,氨气通过冷凝器向自然环境排热,并重新液化。冷凝器内的液态氨经过节流阀自动降压,低压的液态氨进入蒸发器后再次从蒸发器所在空间环境吸热汽化,由此产生制冷效果并形成制冷循环。 现有制冷技术的主要弊端为制冷效率低,耗电量大,降温速度慢。 以现有市场畅销的低温箱产品为例,容积为250升的低温箱,其制冷压缩机的耗电功率为3千瓦。连续工作2小时,其空箱温度才能从常温降到- 40℃。其用电量为21600千焦,其有效制冷量为500千焦,能效比为500/21600,为1/50。50份电能,才能制取1份冷量。 空调工况的制冷效率虽然高一些,但是其耗电量仍然十分惊人。一个夏季下来,一户居民的空调电费可以高达数千元。一般收入的普通民众即使买得起空调,也交不起昂贵的空调电费。中央空调耗电量更高,一栋数万平方米的大楼,每天的空调电费可以高达3至5万元之巨。 由于空调耗电电费昂贵、制冷供冷成本高昂,现有空调设备严格限制新风通量。因此,无论是公共场所,还是空调巴士,目前人们为了躲避炎热就必须呼吸陈腐空气。 现有制冷理论为制冷技术作出了明确的定义:从低于环境温度的物体中吸收热量,并将其转移给环境介质的过程称为制冷。由此酿成现有人工制冷技术的实质就是“热量搬家”。由于所有现有制冷产品的产热量都多于其制冷量,甚至大大多于其制冷量,因此就环境总效果而言,现有制冷技术与其说是制冷,不如说是制热。 现有制冷设备为了给室内供冷,必须向室外排热;为了向户内供暖,必须向户外排冷。蒸发器产生的制冷量主要就是蒸发器内液态工质汽化时吸收的汽化潜热。冷凝器排出的热量,不仅包括与上述汽化潜热数量相等的凝结热,而且还包括压缩机产生的机械热,驱动压缩机运转的电动机的电热。因此其制冷量小于其产热量。 将一台一面制冷、一面排热的窗式空调器放在一个封闭的房间内,房间的温度不但不会降低,反而会升高。夏天家里摆放一台冰箱,就象摆放了一个小火炉。 夏季的城市,本身就是一个热岛。各家各户为了户内有个舒适的温度,都是一个劲地向户外排热。天气越热,越需要制冷。越制冷天气又越热。 现有制冷技术的全部科学原理与理论公式,就是卡诺原理及其公式。卡诺原理认为:制冷机械的制冷效率与制冷系统中的冷、热两个热源的温差成反比。 ε=To/Tk-To 式中ε为制冷效率,To为低温热源的温度,即蒸发温度;Tk为高温热源的温度,即冷凝温度。 卡诺逝世于1832年。45年后,即1877年,第一台可供实际使用的氨压缩制冷机才问世。 常识告诉我们:理论是对实践的概括与总结。 具有讽刺意义的是,现有制冷理论先于制冷实践45年。先于实践的现有制冷理论引领现有制冷技术进行“热量搬家”,步入天气越热越需要制冷,越制冷越热,越热越难以制冷的恶性循环欢迎分享,转载请注明来源:内存溢出
评论列表(0条)