首先是半导体是指室温下电导率介于导体和绝缘体之间的材料。半导体是指具有可控导电性的材料,范围从绝缘体到导体。从科学技术和经济发展的角度来看,半导体影响着人们的日常工作和生活,直到20世纪30年代,这种材料才得到学术界的认可。常见的半导体材料包括硅、锗、砷化镓等。硅是最有影响力的半导体材料之一。
其次是具有光伏的作用。半导体材料的光伏效应是太阳能电池工作的基本原理。目前,半导体材料的光伏应用已成为热点,是全球增长最快、发展最好的清洁能源市场。太阳能电池的主要材料是半导体材料,判断太阳能电池好坏的主要标准是光电转换率。光电转换率越高,太阳能电池的工作效率就越高。根据所用半导体材料的不同,太阳能电池分为晶体硅太阳能电池、薄膜电池和III-V族化合物电池。
再者是原理是接通电源后,发射结正向连接。在正向电场的作用下,发射区多数载流子(电子)的扩散运动加强。因此,发射区的电子在外电场的作用下很容易越过发射结进入基区,形成电子流IEN(注意电流的方向与电子运动的方向相反)。当然,基区的多数载流子(空穴)也会在外电场的作用下流向发射区,形成空穴电流IEP。然而,由于基区中的低杂质浓度,与来自发射区的电子流相比,
要知道的是在半导体的pn结上施加直流电压,P型区的空穴向N型区移动,N型区的电子向P型区移动。当电子和空穴在pn结界面附近结合时,将发射具有对应于半导体带隙的能量的光。使用带隙大的半导体可以获得高能光,比如可见光;低能光,如红外光,可以通过使用现代宽度小的半导体获得。
对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。
因为集电结靠近集电极。而靠近发射极的结叫做发射结。集电结载流子被集电极吸收转化成为电流注入外部电路。做的大是因为散热需要,集电结反偏,外电场克服内电场做功发热,表现为耗散功率很大部分加在集电结上,就如电子管内部耗散功率基本都加在阳极上,故做大加强散热。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)