你好,很高兴为你解答
反三角函数:sinx=a, 则a=arcsinx(反三角函数)
cosx=a, 则a=arccosx(反三角函数)
tanx=a, 则a=arctanx(反三角函数)
三角函数:三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
任意角三角函数
在平面直角坐标系中设O-x为任意角α的始边,在角α终边上任取一点P(x,y),令OP=r
sinα=y/r secα=r/x
cosα=x/r cscα=r/y
tanα=y/x cotα=x/y
可以满足+,-,×,÷,开方,的叫做代数函数,否则是超越函数。
谢谢
反三角函数是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
不过反三角函数不能成为函数,因为它不满足一对一的关系,它是一对多的关系。
可以把三角函数以y=x为对称轴画一下图象,可以发现它不满足一对一的关系。
如果要反三角函数成为函数,应该将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
总之反三角函数的值域是角,有了它表示可以更方便。
比如要表示使得sinx=1/3成立的角。这不是特殊角,不过我们可以用反三角函数表示:x=arcsin1/3。
在解三角方程是尤为重要。不过得注意,一般得在解集加上若干个周期。因为反三角函数是一对多的关系。
郭敦顒回答:
什么是反三角函数?
想来你已认识了三角函数,一个角α的三角函数有α角的正弦sinα,α角的余弦cosα,α角的正切tanα,α角的余切cotα,α角的正割secα,α角的余割cscα,共六个,
如在Rt⊿ABC中,∠C=90°,角的对边分别为a,b,c,c为斜边,
则∠A的三角函数是:
sin A= a/c,cosA= b/c,tanA= a/b,cotA= b/a,secA= c/b,cscA= c/a。
当∠A=30°时,则sin A = sin30°=05,cos30°=(1/2)√3,,
又当已知c=2,则由sin A= a/c得,a=sin A =2•sin30°=1。
以上是已知角度值,得三角函数值,及利用三角函数值求边长。
但若不知角度值,却已知三角函数值,或已知边长计算得到三角函数值,如a=1,c=2,则sin A= a/c=1/2=05,∴∠A=30°,
这个过程写为arc sinx,当x=05时,arcsin05=30°,
arc sinx是x的反正弦函数,sinx表正弦函数值,arc是反三角函数符号,通常
x是已知的。
当已知三角函数值求对应的角度时,则用反三角函数。
arc cosx为x的反余弦函数,其它反三角函数略。
是一种数学术语。反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] , 值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
y=arccot(x),定义域(-∞,+∞),值域(0,π)
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
具体请参考:
http://baikebaiducom/linkurl=8C0KiylJZf1xa37zfcJr2lG_18tFr5AgjQJtJ-GTo8wyCeVF6g8-bqNZXchlIrwc
1、反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
2、反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
3、反正切函数的求导:(arctanx)'=1/(1+x^2)
4、反余切函数的求导:(arccotx)'=-1/(1+x^2)
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。
相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。
3、反正切函数
正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
5、反余切函数
余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
6、反正割函数
正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
7、反余割函数
余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
扩展资料:
反三角函数的公式:
反三角函数的和差公式与对应的三角函数的和差公式没有关系:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];
y=arccos(x),定义域[-1,1],值域[0,π];
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);
y=arccot(x),定义域(-∞,+∞),值域(0,π);
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。
其他几个用类似方法可得。
cos(arccosx)=x,arccos(-x)=π-arccosx。
tan(arctanx)=x,arctan(-x)=-arctanx。
反三角函数其他公式:
cos(arcsinx)=√(1-x^2)。
arcsin(-x)=-arcsinx。
arccos(-x)=π-arccosx。
arctan(-x)=-arctanx。
arccot(-x)=π-arccotx。
arcsinx+arccosx=π/2=arctanx+arccotx。
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。
当x∈[-π/2,π/2]有arcsin(sinx)=x。
x∈[0,π],arccos(cosx)=x。
x∈(-π/2,π/2),arctan(tanx)=x。
x∈(0,π),arccot(cotx)=x。
x>0,arctanx=π/2-arctan1/x,arccotx类似。
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。
三角函数的诱导公式(四公式) 。
公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。
公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。
公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。
公式四: sin(π-α) = sinα cos(π-α) = -cosα 。
-反三角函数
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)