基于地统计学的宁波市区地价空间分布特征研究

基于地统计学的宁波市区地价空间分布特征研究,第1张

楼立明1 冯秀丽2

(1宁波市国土资源局镇海分局,宁波,3151202宁波大学建工学院,宁波,315120)

摘要:城市地价是一个具有时空性质的多维概念,在空间分布上具有较强的关联性和特殊性。本文以宁波市中心城区为研究区域,以地价信息为研究对象,探讨了如何基于地统计学和 GIS 对地价的空间分布特征和规律进行研究的原理和方法。

关键词:城市地价;空间分析;地统计学;宁波市区

1 地统计学的基本概念

地统计学(Geostatistics)是由法国著名数学家G·Matheron教授在研究了南非地质工程师 DGKrike 等人工作的基础上,于1963年提出并创立的。地统计学是在地质分析和统计分析的基础上形成的一套分析空间相关变量的理论和方法,它以区域化变量理论为基础,以变差函数为主要工具,研究那些在空间分布上既有随机性又有结构性的自然现象的科学。地统计学能最大限度的利用野外调查所能提供的各种信息,例如样本位置、样本值和样本承载大小等;能利用稀疏的或无规律的空间数据。由于地统计学能够较准确地描述区域化变量的随机性和结构性变化,因而越来越受到重视,除成功应用于自然资源方面外,还广泛应用于环境科学、农林科学、水利科学和土地科学中。

在地价研究领域,地统计学的应用主要体现在三个方面:一是定量区域化变量的空间相关性,二是对调查数据进行空间插值,三是分析空间数据的时空规律性。相对来说,对空间插值应用较多,由于在通常的地价调查中,野外调查所得的数据不能完全覆盖所要求的区域范围,需要应用地统计学的方法进行插值,将离散的采样点数据内插为连续的数据表面。

应用地统计学的最大好处是它能够在空间相关分析的基础上,利用稀疏的、无规律的调查数据,最大限度的揭示这些数据所能提供的空间信息。但是,地统计学应用在地价研究中还刚刚开始,还存在着诸如空间与时间的协同分析、样点数目、取样位置、方向、大小的设计等等,这些都值得进一步完善和改进。

2 地统计学分析的基本函数

在地统计学上,用于空间相关分析的函数主要是半方差函数(Variograms Function)、协方差函数(Covariance Function)、相关函数(Correlation),其中半方差函数是地统计学最常用的工具。除此之外,还有一般相对方差函数、交叉变差函数、成对相对方差函数、对数方差函数、广义方差函数、特征化方差函数(或指示方差函数)及散点图等,但应用较少,一般不适合对地价进行空间分析。

半方差函数定义为:区域化变量z (xi)和z (xi +h)的增量平方的数学期望,即区域化变量增量的方差。半方差函数既是距离h的函数,又是方向α的函数。其计算公式如下:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

式中,γ(h)为半方差函数值,半方差函数曲线图(Semivariogram)是半方差函数γ(h)对距离 h 的坐标图形。N (h)是被及分隔的数据对的数量,z (xi)和z (xi +h)分别是在点xi 和 xi + h处样本的测量值,h是两分隔样点的距离。

对于一个典型的空间聚集分布,半方差函数一般随着距离的增大而增大,亦即区域化变量的空间变异愈来愈大,空间相关性逐渐减小,但增加至某一值时,半方差函数不再增加而是保持稳定,这表示样点间已不存在空间相关关系。将半方差函数值不再增加时的距离称为空间依赖范围(Range of Spatial Dependence),简称变程或相关程(Range),用 a表示。此时的半方差函数值称为基台值(Sill),用C0 +C表示。半方差函数曲线在 Y 轴上的截距称为区域不连续值,亦称块金(Nugget)系数或者核方差,用 C0表示。C0的大小可以反映区域化变量的局部随机性大小。(基台一块金)/基台(即 C/(C0 +C))的大小可以反映空间变异在总变异中所占的比例,或用随机程度(块金/基台,即C0/(C0 +C))的大小反映研究范围内不是由地价的空间自相关引起的那部分变异在总变异中所占的比率,也就是地价随机性和结构性所占成分。

3 宁波市区地价的地统计学分析

31 宁波市区地价的地统计学分析范围及样点分布

本次宁波市区城镇土地定级范围包含了宁波的六个区,从土地利用方式和土地市场发育水平来看,都存在着较大的差异,特别是山区,土地交易现象极少,土地价格样点稀缺。从地统计学对样点的要求而言,虽然不要求地价样点规则取样,但是大面积内样点稀缺会对分析结果的可靠性造成很大影响,同时,考虑到宁波市区土地交易主要集中在以市三江片为核心的一个辐射圈内,因此,本次宁波市区地价的地统计学分析的范围定为宁波市三江片向外扩展的一个区域。分析范围及范围内地价样点情况如图1~图3 所示。

图1 分析范围内商业地价样点分布图

图2 分析范围内住宅地价样点分布图

图3 分析范围内工业地价样点分布图

32 地价在各向异性条件下的变异分析

地价作为一种区域化变量,在各个方向上都有变化。一个区域化变量如果在不同方向上都有变化,那么当变异函数r (h)在各个方向上的变化都相同时称为各向同性,反之称为各向异性。图4~图6为不同地价类型在0°,45°,90°和135°四个方向上的变异曲线图。

(1)工业地价没有表现出各向异性结构特征,在不同的方向上,不同距离的半方差函数值均不能用合适的模型来拟合出半方差曲线,这说明宁波市区工业用地的发展轴向不明确,同时工业用地价格的政策性因素也较大,造成地价规律性较差。

(2)住宅、商业两种地价均表现出一定的各向异性结构特征,在不同的方向上,块金值、基台值和变程均不相同,具有带状各向异性特征。在135°方向(西北—东南)上地价不同距离上的半方差函数值的拟合效果较好,说明近年来鄞州区中心区的建设对宁波城市商业和居住功能的分布格局产生了显著的影响。宁波市三江片西部和南部大量的居住区建设,形成了好又多、麦德龙等新的商业中心。

33 地价在各向同性条件下的变异分析

为了不同地价间的对比和地价扩散情况的分析,往往需要将各向异性结构通过线性变换和矩阵变换转化为各向同性结构。其原理是通过改变不同方向上的距离h,使 γ(h)在各个方向上具有相同的变化情况。地统计学软件 GS+提供了这种工具,使得具有各向异性的区域化变量可以转化为各向同性结构下进行研究。图7~图9 为不同地价类型在各向同性下的变异曲线图,图10~图12 为不同地价类经过kriging空间插值后的平面和相应的三维曲面图。表1 为不同地价类型各向同性下的变异曲线的模拟公式参数。

表1 不同地价类型各向同性下的变异曲线的模拟公式参数

图4 工业地价在0°,45°,90°,135°四个方向上的变异曲线图(指数模型)

图5 住宅地价在0°,45°,90°,135°四个方向上的变异曲线图(指数模型)

图6 工业地价在0°,45°,90°,135°四个方向上的变异曲线图(球状模型)

工业地价变异曲线模拟方程为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

图7 工业地价变异曲线图(球状模型)

住宅地价变异曲线模拟方程为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

商业地价变异曲线模拟方程为:

土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集

图8 住宅地价变异曲线图(球状模型)

图9 商业地价变异曲线图(球状模型)

图10 工业地价经过kriging 空间插值后的平面和相应的三维曲面图

图11 住宅地价经过kriging 空间插值后的平面和相应的三维曲面图

图12 商业地价经过kriging 空间插值后的平面和相应的三维曲面图

4 结论

(1)三种地价在空间一定范围内均存在着空间相关性,它们的空间相关距离为1810~3925 m。工业地价的空间相关距离最大,为3925 m;住宅次之,为2914 m;商业最小,为1810 m。说明土地价格空间变化的梯度是商业用地大于住宅用地,住宅用地大于工业用地。

(2)在三种地价空间变异的总方差中,均是结构方差(C)所占的比例要大于块金效应(C0)所占比例。这说明确定性因素(交通状况、基础设施、环境状况等)对地价的影响要大于随机因素引起的地价差异,地价的构成还是比较合理的。

(3)块金效应(C0),是住宅地价> 商业地价> 工业地价,这说明三种地价中住宅地价最容易受不确定性因素影响,价格变动最大,工业地价相对最稳定。这与宁波市房地产市场中住宅价格明显提高,近年来政府不时出台宏观调控政策的情况比较符合。

图13 宁波市区商业用地价格分布图

图14 宁波市区住宅用地价格分布图

(4)空间变异系数 C/C0 +C,商业地价达到 0659,住宅为 0807,工业为 0874,这说明工业地价的空间变异性最强,受周围地价的影响最大。而商业地价和住宅地价受到宁波市近年来城市规划调整的影响,随着新规划的城市中心(如东部新城)、副中心(鄞州中心区)的建设,在空间上出现了不连续的、突变性特点。

(5)从通过空间插值得到的宁波市中心城区(三江片)的地价分布图,加入道路和河流等控制性基础因素(图13~图15),可以看出,宁波市商业地价的地域分异规律明显,不仅原来的中心城区老的城市建成区地价较高,而且整个城市往东发展和江北区往北发展,海曙区往西发展、鄞州区往西南发展带来的商业用地地价变化也很明显。宁波市区住宅用地价格和工业用地价格变化规律也得到了非常直观的反映。

图15 宁波市区工业用地价格分布图

参考文献

刘卫东等宁波三江片城市土地价格调查北京:科学出版社,2002

王政权地统计学及在生态学中的应用北京:科学出版社,1999

王瑞萍GIS 空间分析技术应用研究油气田地面工程,2003,22 (6)

陈浮,李满春等城市地价空间分布因式的地统计学分析南京大学学报(自然科学),1999,35 (6)

单卫东,包浩生城市中空间扩散的各向异性研究南京大学学报(自然科学),1996,32 (3)

许晓晖上海市商品住宅价格空间分布特征分析经济地理,1997,17 (3)

也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。

对于初学者,尤其是还没有编程经验的非常有用的一个文件

遗传算法实例

% 下面举例说明遗传算法 %

% 求下列函数的最大值 %

% f(x)=10sin(5x)+7cos(4x) x∈[0,10] %

% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈001 。 %

% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %

% %

%--------------------------------------------------------------------------------------------------------------%

%--------------------------------------------------------------------------------------------------------------%

% 编程

%-----------------------------------------------

% 21初始化(编码)

% initpopm函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。

%遗传算法子程序

%Name: initpopm

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,

% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 22 计算目标函数值

% 221 将二进制数转化为十进制数(1)

%遗传算法子程序

%Name: decodebinarym

%产生 [2^n 2^(n-1) 1] 的行向量,然后求和,将二进制转化为十进制

function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2^(py-i)pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

% 222 将二进制编码转化为十进制数(2)

% decodechromm函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),

% 参数1ength表示所截取的长度(本例为10)。

%遗传算法子程序

%Name: decodechromm

%将二进制编码转换成十进制

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

% 223 计算目标函数值

% calobjvaluem函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

%遗传算法子程序

%Name: calobjvaluem

%实现目标函数的计算

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数

x=temp110/1023; %将二值域 中的数转化为变量域 的数

objvalue=10sin(5x)+7cos(4x); %计算目标函数值

% 23 计算个体的适应值

%遗传算法子程序

%Name:calfitvaluem

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=00;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

% 24 选择复制

% 选择或复制 *** 作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。

% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:

% 1) 在第 t 代,由(1)式计算 fsum 和 pi

% 2) 产生 {0,1} 的随机数 rand( ),求 s=rand( )fsum

% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中

% 4) 进行 N 次2)、3) *** 作,得到 N 个个体,成为第 t=t+1 代种群

%遗传算法子程序

%Name: selectionm

%选择复制

function [newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue); %求适应值之和

fitvalue=fitvalue/totalfit; %单个个体被选择的概率

fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]

[px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

while newin<=px

if(ms(newin))<fitvalue(fitin)

newpop(newin)=pop(fitin);

newin=newin+1;

else

fitin=fitin+1;

end

end

% 25 交叉

% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置

% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:

% x1=0100110

% x2=1010001

% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:

% y1=0100001

% y2=1010110

% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。

% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。

%遗传算法子程序

%Name: crossoverm

%交叉

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:2:px-1

if(rand<pc)

cpoint=round(randpy);

newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];

newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];

else

newpop(i,:)=pop(i);

newpop(i+1,:)=pop(i+1);

end

end

% 26 变异

% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,

% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

%遗传算法子程序

%Name: mutationm

%变异

function [newpop]=mutation(pop,pm)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:px

if(rand<pm)

mpoint=round(randpy);

if mpoint<=0

mpoint=1;

end

newpop(i)=pop(i);

if any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

else

newpop(i,mpoint)=0;

end

else

newpop(i)=pop(i);

end

end

% 27 求出群体中最大得适应值及其个体

%遗传算法子程序

%Name: bestm

%求出群体中适应值最大的值

function [bestindividual,bestfit]=best(pop,fitvalue)

[px,py]=size(pop);

bestindividual=pop(1,:);

bestfit=fitvalue(1);

for i=2:px

if fitvalue(i)>bestfit

bestindividual=pop(i,:);

bestfit=fitvalue(i);

end

end

% 28 主程序

%遗传算法主程序

%Name:genmain05m

clear

clf

popsize=20; %群体大小

chromlength=10; %字符串长度(个体长度)

pc=06; %交叉概率

pm=0001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体

for i=1:20 %20为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue); %复制

[newpop]=crossover(pop,pc); %交叉

[newpop]=mutation(pop,pc); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值

y(i)=max(bestfit);

n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)10/1023;

pop=newpop;

end

fplot('10sin(5x)+7cos(4x)',[0 10])

hold on

plot(x,y,'r')

hold off

[z index]=max(y); %计算最大值及其位置

x5=x(index)%计算最大值对应的x值

y=z

问题求f(x)=x 10sin(5x) 7cos(4x)的最大值,其中0<=x<=9

分析选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为095,变异概率为008

程序清单

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x 10sin(5x) 7cos(4x);

%把上述函数存储为fitnessm文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',

[008],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

78562 248553(当x为78562时,f(x)取最大值248553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

问题在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20exp(-02sqrt(05(x1^2 x2^2)))-exp(05(cos(2pix1) cos(2pix2))) 2271282的最小值。

分析种群大小10,最大代数1000,变异率01,交叉率03

程序清单

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20exp(-02sqrt(sum(x^2)/numv)))-exp(sum(cos(2pix))/numv) 2271282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

00000 -00000 00055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x 10sin(5x) 7cos(4x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

问题求f(x)=x+10sin(5x)+7cos(4x)的最大值,其中0<=x<=9

分析选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为095,变异概率为008

程序清单

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10sin(5x)+7cos(4x);

%把上述函数存储为fitnessm文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',

[008],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

78562 248553(当x为78562时,f(x)取最大值248553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

问题在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20exp(-02sqrt(05(x1^2+x2^2)))-exp(05(cos(2pix1)+cos(2pix2)))+2271282的最小值。

分析种群大小10,最大代数1000,变异率01,交叉率03

程序清单

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20exp(-02sqrt(sum(x^2)/numv)))-exp(sum(cos(2pix))/numv)+2271282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

00000 -00000 00055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10sin(5x)+7cos(4x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

参考资料:

不记得了,抱歉

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

改成

[p,endPop,bestSols,trace]=ga(bounds,@fitness)

试试

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/11673223.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存