自变量增大,函数值不增加的就是不增函数,有人直接叫它减函数,而把自变量增加,函数值减小的函数叫严格减函数。
不强调区间的情况下,所谓的单调函数是指, 对于整个定义域而言,函数具有单调性。而不是针对定义域的子区间而言。
举个例子,反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。单调函数只是单调性函数中特殊的一种。区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。具有单调性函数可以根据区间不同而单调性不同。
扩展资料一般地,设函数F(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≥f(x2),那么就说F(x)在这个区间上是增函数(另一说法为单调不减函数)。
如果f(x1)>f(x2),那么就说F(x)在这个区间上是严格增函数(另一种说法是增函数)。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≤f(x2)那么就是f(x)在这个区间上是减函数(另一种说法为单调不增函数)。如果f(x1)<f(x2),那么就说f(x)在这个区间上是严格减函数(另一种说法是减函数)。
为了回避歧义,下文采取单调不减函数,严格增函数,单调不增函数,严格减函数等术语。
增函数和减函数不是两种基本函数类型,而是一种函数性质。
所谓增函数,是指在定义域内,函数值随自变量的增大而增大,减小而减小的函数。比如,y=x; y=10的x次方等等。用数学语言表示就是:对于定义域为D的函数y=f(x),若任意x1,x2满足x1,x2∈D,且x1>x2,则有f(x1)>f(x2);
所谓减函数,与增函数相反,是指在定义域内,函数值随自变量的增大而减小,随自变量减小而增大的函数。比如:y=-x; y=1/2的x次方等。用数学语言表示就是:对于定义域为D的函数y=f(x),若任意x1,x2满足x1,x2∈D,且x1>x2,则有f(x1)<f(x2);
需要注意:
递增或递减一定要在整个函数定义域内满足。比如y=1/x,其图像为双曲线,虽然在双曲线的两支上分别满足递减,但如果两支上各取一个点,则不满足递减(x越大y越小),因而整个函数就不是递减函数 当然我们可以说该函数在(-无穷,0)或者(0,+无穷)上单调递减。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)