如何用栈实现递归与非递归的转换
分类: C/C++2010-07-12 14:4012人阅读评论(0)收藏举报
如何用栈实现递归与非递归的转换一为什么要学习递归与非递归的转换的实现方法 1)并不是每一门语言都支持递归的 2)有助于理解递归的本质 3)有助于理解栈,树等数据结构二递归与非递归转换的原理 递归与非递归的转换基于以下的原理:所有的递归程序都可以用树结构表示出来需要说明的是,这个"原理"并没有经过严格的数学证明,只是我的一个猜想,不过在至少在我遇到的例子中是适用的 学习过树结构的人都知道,有三种方法可以遍历树:前序,中序,后序理解这三种遍历方式的递归和非递归的表达方式是能够正确实现转换的关键之处,所以我们先来谈谈这个需要说明的是,这里以特殊的二叉树来说明,不过大多数情况下二叉树已经够用,而且理解了二叉树的遍历,其它的树遍历方式就不难了 1)前序遍历 a)递归方式:
void preorder_recursive(Bitree T) / 先序遍历二叉树的递归算法 /
{
if (T) {
visit(T); / 访问当前结点 /
preorder_recursive(T->;lchild); / 访问左子树 /
preorder_recursive(T->;rchild); / 访问右子树 /
}
}
复制代码
b)非递归方式
void preorder_nonrecursive(Bitree T) / 先序遍历二叉树的非递归算法 /
{
initstack(S);
push(S,T); / 根指针进栈 /
while(!stackempty(S)) {
while(gettop(S,p)&&p) { / 向左走到尽头 /
visit(p); / 每向前走一步都访问当前结点 /
push(S,p->;lchild);
}
pop(S,p);
if(!stackempty(S)) { / 向右走一步 /
pop(S,p);
push(S,p->;rchild);
}
}
}
复制代码
2)中序遍历 a)递归方式
void inorder_recursive(Bitree T) / 中序遍历二叉树的递归算法 /
{
if (T) {
inorder_recursive(T->;lchild); / 访问左子树 /
visit(T); / 访问当前结点 /
inorder_recursive(T->;rchild); / 访问右子树 /
}
}
复制代码
b)非递归方式
void inorder_nonrecursive(Bitree T)
{
initstack(S); / 初始化栈 /
push(S, T); / 根指针入栈 /
while (!stackempty(S)) {
while (gettop(S, p) && p) / 向左走到尽头 /
push(S, p->;lchild);
pop(S, p); / 空指针退栈 /
if (!stackempty(S)) {
pop(S, p);
visit(p); / 访问当前结点 /
push(S, p->;rchild); / 向右走一步 /
}
}
}
复制代码
3)后序遍历 a)递归方式
void postorder_recursive(Bitree T) / 中序遍历二叉树的递归算法 /
{
if (T) {
postorder_recursive(T->;lchild); / 访问左子树 /
postorder_recursive(T->;rchild); / 访问右子树 /
visit(T); / 访问当前结点 /
}
}
复制代码
b)非递归方式
typedef struct {
BTNode ptr;
enum {0,1,2} mark;
} PMType; / 有mark域的结点指针类型 /
void postorder_nonrecursive(BiTree T) / 后续遍历二叉树的非递归算法 /
{
PMType a;
initstack(S); / S的元素为PMType类型 /
push (S,{T,0}); / 根结点入栈 /
while(!stackempty(S)) {
pop(S,a);
switch(amark)
{
case 0:
push(S,{aptr,1}); / 修改mark域 /
if(aptr->;lchild)
push(S,{aptr->;lchild,0}); / 访问左子树 /
break;
case 1:
push(S,{aptr,2}); / 修改mark域 /
if(aptr->;rchild)
push(S,{aptr->;rchild,0}); / 访问右子树 /
break;
case 2:
visit(aptr); / 访问结点 /
}
}
}
复制代码
4)如何实现递归与非递归的转换 通常,一个函数在调用另一个函数之前,要作如下的事情:a)将实在参数,返回地址等信息传递 给被调用函数保存; b)为被调用函数的局部变量分配存储区;c)将控制转移到被调函数的入口 从被调用函数返回调用函数之前,也要做三件事情:a)保存被调函数的计算结果;b)释放被调 函数的数据区;c)依照被调函数保存的返回地址将控制转移到调用函数 所有的这些,不论是变量还是地址,本质上来说都是"数据",都是保存在系统所分配的栈中的 ok,到这里已经解决了第一个问题:递归调用时数据都是保存在栈中的,有多少个数据需要保存 就要设置多少个栈,而且最重要的一点是:控制所有这些栈的栈顶指针都是相同的,否则无法实现 同步 下面来解决第二个问题:在非递归中,程序如何知道到底要转移到哪个部分继续执行回到上 面说的树的三种遍历方式,抽象出来只有三种 *** 作:访问当前结点,访问左子树,访问右子树这三 种 *** 作的顺序不同,遍历方式也不同如果我们再抽象一点,对这三种 *** 作再进行一个概括,可以 得到:a)访问当前结点:对目前的数据进行一些处理;b)访问左子树:变换当前的数据以进行下一次 处理;c)访问右子树:再次变换当前的数据以进行下一次处理(与访问左子树所不同的方式) 下面以先序遍历来说明:
void preorder_recursive(Bitree T) / 先序遍历二叉树的递归算法 /
{
if (T) {
visit(T); / 访问当前结点 /
preorder_recursive(T->;lchild); / 访问左子树 /
preorder_recursive(T->;rchild); / 访问右子树 /
}
}
复制代码
visit(T)这个 *** 作就是对当前数据进行的处理, preorder_recursive(T->;lchild)就是把当前 数据变换为它的左子树,访问右子树的 *** 作可以同样理解了 现在回到我们提出的第二个问题:如何确定转移到哪里继续执行关键在于一下三个地方:a) 确定对当前数据的访问顺序,简单一点说就是确定这个递归程序可以转换为哪种方式遍历的树结 构;b)确定这个递归函数转换为递归调用树时的分支是如何划分的,即确定什么是这个递归调用 树的"左子树"和"右子树"c)确定这个递归调用树何时返回,即确定什么结点是这个递归调用树的 "叶子结点" 三三个例子 好了上面的理论知识已经足够了,下面让我们看看几个例子,结合例子加深我们对问题的认识 即使上面的理论你没有完全明白,不要气馁,对事物的认识总是曲折的,多看多想你一定可以明 白(事实上我也是花了两个星期的时间才弄得比较明白得) 1)例子一:
f(n) =n + 1; (n <2)
f[n/2] + f[n/4](n >;= 2);
这个例子相对简单一些,递归程序如下:
int f_recursive(int n)
{
int u1, u2, f;
if (n < 2)
f = n + 1;
else {
u1 = f_recursive((int)(n/2));
u2 = f_recursive((int)(n/4));
f = u1 u2;
}
return f;
}
复制代码
下面按照我们上面说的,确定好递归调用树的结构,这一步是最重要的首先,什么是叶子结点 ,我们看到当n < 2时f = n + 1,这就是返回的语句,有人问为什么不是f = u1 u2,这也是一个 返回的语句呀答案是:这条语句是在u1 = exmp1((int)(n/2))和u2 = exmp1((int)(n/4))之后 执行的,是这两条语句的父结点 其次,什么是当前结点,由上面的分析,f = u1 u2即是父结点 然后,顺理成章的u1 = exmp1((int)(n/2))和u2 = exmp1((int)(n/4))就分别是左子树和右子 树了最后,我们可以看到,这个递归函数可以表示成后序遍历的二叉调用树好了,树的情况分析 到这里,下面来分析一下栈的情况,看看我们要把什么数据保存在栈中,在上面给出的后序遍历的如果这个过程你没 非递归程序中我们已经看到了要加入一个标志域,因此在栈中要保存这个标志域;另外,u1,u2和 每次调用递归函数时的n/2和n/4参数都要保存,这样就要分别有三个栈分别保存:标志域,返回量 和参数,不过我们可以做一个优化,因为在向上一层返回的时候,参数已经没有用了,而返回量也 只有在向上返回时才用到,因此可以把这两个栈合为一个栈如果对于上面的分析你没有明白,建 议你根据这个递归函数写出它的递归栈的变化情况以加深理解,再次重申一点:前期对树结构和 栈的分析是最重要的,如果你的程序出错,那么请返回到这一步来再次分析,最好把递归调用树和 栈的变化情况都画出来,并且结合一些简单的参数来人工分析你的算法到底出错在哪里 ok,下面给出我花了两天功夫想出来的非递归程序(再次提醒你不要气馁,大家都是这么过来 的)
int f_nonrecursive(int n)
{
int stack[20], flag[20], cp;
/ 初始化栈和栈顶指针 /
cp = 0;
stack[0] = n;
flag[0] = 0;
while (cp >;= 0) {
switch(flag[cp]) {
case 0: / 访问的是根结点 /
if (stack[cp] >;= 2) { / 左子树入栈 /
flag[cp] = 1; / 修改标志域 /
cp++;
stack[cp] = (int)(stack[cp - 1] / 2);
flag[cp] = 0;
} else { / 否则为叶子结点 /
stack[cp] += 1;
flag[cp] = 2;
}
break;
case 1: / 访问的是左子树 /
if (stack[cp] >;= 2) { / 右子树入栈 /
flag[cp] = 2; / 修改标志域 /
cp += 2;
stack[cp] = (int)(stack[cp - 2] / 4);
flag[cp] = 1;
} else { / 否则为叶子结点 /
stack[cp] += 1;
flag[cp] = 2;
}
break;
case 2: / /
if (flag[cp - 1] == 2) { / 当前是右子树吗 /
/
如果是右子树, 那么对某一棵子树的后序遍历已经
结束,接下来就是对这棵子树的根结点的访问
/
stack[cp - 2] = stack[cp] stack[cp - 1];
flag[cp - 2] = 2;
cp = cp - 2;
} else
/ 否则退回到后序遍历的上一个结点 /
cp--;
break;
}
}
return stack[0];
}
复制代码
算法分析:a)flag只有三个可能值:0表示第一次访问该结点,1表示访问的是左子树,2表示 已经结束了对某一棵子树的访问,可能当前结点是这棵子树的右子树,也可能是叶子结点b)每 遍历到某个结点的时候,如果这个结点满足叶子结点的条件,那么把它的flag域设为2;否则根据 访问的是根结点,左子树或是右子树来设置flag域,以便决定下一次访问该节点时的程序转向 2)例子二 快速排序算法 递归算法如下:
void swap(int array[], int low, int high)
{
int temp;
temp = array[low];
array[low] = array[high];
array[high] = temp;
}
int partition(int array[], int low, int high)
{
int p;
p = array[low];
while (low < high) {
while (low < high && array[high] >;= p)
high--;
swap(array,low,high);
while (low < high && array[low] <= p)
low++;
swap(array,low,high);
}
return low;
}
void qsort_recursive(int array[], int low, int high)
{
int p;
if(low < high) {
p = partition(array, low, high);
qsort_recursive(array, low, p - 1);
qsort_recursive(array, p + 1, high);
}
}
复制代码
需要说明一下快速排序的算法: partition函数根据数组中的某一个数把数组划分为两个部分, 左边的部分均不大于这个数,右边的数均不小于这个数,然后再对左右两边的数组再进行划分这 里我们专注于递归与非递归的转换,partition函数在非递归函数中同样的可以调用(其实 partition函数就是对当前结点的访问) 再次进行递归调用树和栈的分析: 递归调用树:a)对当前结点的访问是调用partition函数;b)左子树: qsort_recursive(array, low, p - 1);c)右子树:qsort_recursive(array, p + 1, high); d)叶子结点:当low < high时;e)可以看出这是一个先序调用的二叉树 栈:要保存的数据是两个表示范围的坐标
void qsort_nonrecursive(int array[], int low, int high)
{
int m[50], n[50], cp, p;
/ 初始化栈和栈顶指针 /
cp = 0;
m[0] = low;
n[0] = high;
while (m[cp] < n[cp]) {
while (m[cp] < n[cp]) { / 向左走到尽头 /
p = partition(array, m[cp], n[cp]); / 对当前结点的访问 /
cp++;
m[cp] = m[cp - 1];
n[cp] = p - 1;
}
/ 向右走一步 /
m[cp + 1] = n[cp] + 2;
n[cp + 1] = n[cp - 1];
cp++;
}
}
复制代码
3)例子三 阿克曼函数:
akm(m, n) = n + 1; (m = 0时)
akm(m - 1, 1); (n = 0时)
akm(m - 1, akm(m, n - 1)); (m != 0且n != 0时)
复制代码
递归算法如下:
int akm_recursive(int m, int n)
{
int temp;
if (m == 0)
return (n + 1);
else if (n == 0)
return akm_recursive(m - 1, 1);
else {
temp = akm_recursive(m, n - 1);
return akm_recursive(m - 1, temp);
}
}
我觉得你的想法是对的 2那里之所以没有直接M1[CP]=0应该是为了逻辑思考上的方便 实际也是等于0啊
3那里这个程序的 算法好像不大正常
代入AKM[1,1]算出来代码是不正确的 等于2
实际上应该等于3 啊
所以按照你的想法改应该是正确的
我想这应该不是官方的代码吧= =恕我愚钝 着实没觉得代码正确
楼主如果要加300分,可能要开2贴了,因为1贴最多只能200分,追加最多只能50分。
你给的那个解法,写的本来就有问题。
不信,你自己试试这个程序:
#include<stdioh>
//非递归解法
int akm_nonrecursive(int m, int n)
{
int m1[50], n1[50], cp;
cp = 0;
m1[0] = m;
n1[0] = n;
do {
while (m1[cp] > 0) { / 压栈, 直到m1[cp] = 0 /
while (n1[cp] > 0) { / 压栈, 直到n1[cp] = 0 /
cp++;
m1[cp] = m1[cp - 1];
n1[cp] = n1[cp - 1] - 1;
}
/ 计算akm(m - 1, 1),当n = 0时 /
m1[cp] = m1[cp] - 1;
n1[cp] = 1;
}
/ 改栈顶为akm(m - 1, n + 1),当m = 0时 /
cp--;
m1[cp] = m1[cp] - 1;
n1[cp] = n1[cp + 1] + 1;
} while (cp > 0 || m1[cp] > 0);
return n1[0] + 1;
}
int main()
{
printf("%d\n",akm_nonrecursive(0,2));
printf("%d\n",akm_nonrecursive(2,0));
printf("%d\n",akm_nonrecursive(2,3));
return 0;
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)