1 反函数存在的条件。对于任意一个函数y=f(x),不一定有反函数。如y=x2 (x∈R),由y=x2,解得 ,对于每一个确定的函数值y,有两个x值与之对应,不符合函数定义,所以y=x2(x∈R)没有反函数。不难发现,只有当函数y=f(x)的对应法则f是从定义域到值域的一一映射时,它才存在反函数。函数若存在反函数,它的反函数是唯一的。 2 反函数也是函数。一个函数与它的反函数互为反函数,并且它们的定义域、值域互换,对应法则互逆。一个函数与它的反函数可以是两个不同的函数,也可以是同一个函数。如函数 3 在反函数概念的学习中,先后出现了三个函数记号——y=f(x),x=f-1(y),y=f-1(x),它们之间的关系是:在y=f(x)与x=f-1(y)中,字母x,y所表示的数量相同,取值范围相同,但地位不同。在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数。y=f(x)与x=f-1(y)互为反函数,它们的图象相同(由于两式中x,y所表示的量完全相同)。在y=f(x)与y=f-1(x)中,字母x,y的地位相同,即x是自变量,y是x的函数,但x,y表示的量的意义变换了,取值范围也互换了,即y=f(x)中x(或y)与y=f-1(x)中的y(或x)表示相同的量。y=f(x)与y=f-1(x)互为反函数,它们的图象关于直线y=x对称。在y=f-1(x)与x=f-1(y)中,字母x,y的地位及其表示的量互相交换,但它们却是同一函数,都是y=f(x)的反函数。函数x=f-1(y)与y=f-1(x)是同一函数的理由是:它们的定义域相同,值域相同,对应法则一样。 4 反应函数的性质主要有:(1)互为反函数的两个函数的图象关于直线y=x对称;(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;(3)一个函数与它的反函数在相应区间上单调性一致;(4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数;,其中A、C分别为函数f(x)的定义域、值域。 反函数的求法。注意不要把f-1(x)理解为 ,防止把求反函数混为求倒数。f-1(x)表示f(x)的反函数,式子中的f-1表示对应法则,它与原来函数f(x)中的对应法则是互逆的关系。求反函数的过程主要是“解方程”的过程,即将y视为常数,将x看作未知数,用解方程的方法解出x=f-1(y),此时一定要注意表达式的唯一性。再将x,y的位置交换,得y=f-1(x)。求出式子y=f-1(x)后,一般还要注明反函数的定义域。由于反函数的定义域必须与原来函数的值域相同,由式子f-1(x)确定x的取值范围未必合适(原因是在解方程的过程中,可能出现非同解变形),因此,标注反函数的定义域很有必要,而且须结合原来函数的值域确定反函数的定义域。例如,函数 的反函数的解析式为y=(x-1)2,由于原来函数的值域是y≥1,故反函数的定义域是x≥1,而不能是x∈R。求反函数的解题步骤可概括为“一解二换三注”。
求反函数的一般步骤如下:
1、从原函数式子中解出x用y表示。
2、对换x,y。
3、标明反函数的定义域。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x) 。反函数y=f ﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
反函数的性质:
(1)函数f(x)与它的反函数图象关于y=x直线对称。
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(3)一个函数与它的反函数在相应区间上单调性一致。
两种方法:
1:解y=f(x),以x为未知数,解得x=g(y);再交换x,y,得:反函数为y=g(x)
2:交换x,y得:x=f(y),以y为未知数,解得y=g(x),此即为反函数
求反函数的步骤:
1、反解方程,将x看成未知数,y看成已知数,解出x的值。
2、将这个式子中的x,y兑换位置,就得到反函数的解析式。
3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。
则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。
例如:f(x)=2^x+1的反函数
求原函数的定义域,y>1,以备作反函数的定义域;
从y=2^x +1中解出x=log2(y-1);
x,与y互换,得反函数
y=log2(x-1)
在求反函数的求法中是必须要调换x和y的。
反函数也是函数,是函数的话,一般用x表示自变量,y表示函数。既是习惯,也是约定。
扩展资料:
常见的反函数:
三角函数特殊一点,如arcsin(x)因值域为[-π/2,π/2],需要分段求(向上或向下平移):
y=sinx (-π/2≤x≤π/2)
反函数y=arcsinx
y=sinx (π/2≤x≤3π/2)
反函数y=π-arcsinx
y=sinx (3π/2≤x≤5π/2)
反函数y=2π+arcsinx
-反函数
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)