满足拉普拉斯方程的函数没有极值,这句话怎么理解

满足拉普拉斯方程的函数没有极值,这句话怎么理解,第1张

拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径r1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径r2,用

r1与r2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△p=

p1-

p2,其数值与液面曲率大小有关,可表示为:

  在数理方程中,拉普拉斯方程为:△u=d^2u/dx^2+d^2u/dy^2=0,其中△为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ

  上面的方程常常简写作:

  或

  其中div表示矢量场的散度(结果是一个标量场),grad表示标量场的梯度(结果是一个矢量场),或者简写作:

  其中δ称为拉普拉斯算子

  拉普拉斯方程的解称为调和函数。

  如果等号右边是一个给定的函数f(x,

y,

z),即:

  则该方程称为泊松方程。

拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是

laplace

operator

或简称作

laplacian。

  拉普拉斯方程的狄利克雷问题可归结为求解在区域d内定义的函数φ,使得在d的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

  拉普拉斯方程的诺伊曼边界条件不直接给出区域d边界处的温度函数φ本身,而是φ沿d的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。

  拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。

  

在流场中的应用

  设u、v

分别为满足定常、不可压缩和无旋条件的流体速度场的x

和y

方向分量(这里仅考虑二维流场),那么不可压缩条件为:

  无旋条件为:

  若定义一个标量函数ψ,使其微分满足:

  那么不可压缩条件便是上述微分式的可积条件。积分的结果函数ψ称为流函数,因为它在同一条流线上各点的值是相同的。ψ的一阶偏导为:

  无旋条件即令

ψ

满足拉普拉斯方程。ψ的共轭调和函数称为速度势。

柯西-黎曼方程要求

  所以每一个解析函数都对应着平面内的一个定常不可压缩无旋流场。解析函数的实部为速度势函数,虚部为流函数。

微分:是当自变量x变化了一点点(dx)而导致了函数(f(x))变化了多少。  比如,国民收入Y=f(c),c是消费,那c变化了dc时,会导致Y变化多少呢?变化dY,这就是微分,而dY/dc就是这个单变量函数的导数。把微分dY视为dx的线性函数,那么导数就是这个线性函数的系数:注意,这个视角甚至可以推广到微分流形、泛函,等你以后深入学习到更高的层次就会知道,在这里打个伏笔。  差分:粗糙地讲,就是离散化的微分,即y。当变化量很微小时,就近似看成dy。  变分:应该是指泛函的变分吧,这里就不扯什么functional analysis里的banach空间微分理论了,简单说下,泛函是将函数空间映射到数域,就是,把一个函数映射成一个数。打个比方,从A点到B点有无数条路径,每一条路径都是一个函数吧。这无数条路径,每一条函数(路径)的长度都是一个数,对吧?那你从这无数个路径当中选一个路径最短或者最长的,这就是求泛函的极值问题。有一种老的叫法,函数空间的自变量我们称为宗量(自变函数),当宗量变化了一点点而导致了泛函值变化了多少,这其实就是变分。变分,就是微分在函数空间的拓展,其精神内涵是一致的。求解泛函变分的方法主要有古典变分法、动态规划和最优控制。我建议数学功底好的同学亲自去看看《非线性泛函分析》的书,数学实在不行的同学,仔细看看有关变分法或最优控制理论的书籍!建议在校同学有条件的最好自己多去图书馆看看,尽量少花时间在网络上问问题。

赫尔曼取向函数f的表达式:C=1,F=(A`B`)`(AB)`=(A+B)(A`+B`)=AB`+BA`。

EN是三态门的“使能”端,上面一个与非门EN(C)低电平有效,下面一个与非门EN(C)高电平有效,上下两个与非门属于“线与”状态,但要看C的状态选输出。若f(x)的导函数为f'(x),令f'(x)=0,解出来的x值即为f(x)的极值点(极值点不是一个点,而是一个x坐标)。

原理

其中的每一点通过级数(球调和函数)展开得到,级数中的每一项包含着由极图得到的数据,欧拉角可供确定用{hkl} <uvw>来表示的织构中的组分。取向分布函数的分析结果,通常是在欧拉空间作图表示,所谓欧拉空间就是以三个欧拉角为轴的正交座标空间。

d性力学中常用的数学方法可分分成两类:

①精确解法 包括分离变量法和d性力学的复变函数方法。d性力学中的许多精确解是用分离变量法求得的。其步骤大致如下:根据物体的形状,选择一种合适的曲线坐标系,并写出相应于该坐标系的d性力学微分方程和边界条件,如果微分方程中的变量能够分离,通常便可求得问题的解。能用分离变量法求得精确解的问题有:无限和半无限体的问题,球体和球壳的问题,椭球腔的问题,圆柱和圆盘的问题等。

对于能化为平面调和函数或平面双调和函数的问题,复变函数方法是一个有效的求解工具《柱体的扭转和弯曲问题、平面应变和平面应力问题以及薄板弯曲问题中的许多重要精确解都是用复变函数法求得的。

②近似解法 为求解一些复杂的问题,在d性力学中还发展了许多近似解法,能量法就是其中用得最多的一类方法,它把d性力学问题化为数学中的变分问题(泛函的极值和驻值问题),然后再用瑞利-里兹法求近似解。能量法的内容很丰富,适应性很强。工程界当前广泛使用的有限元法是能量法的一种新发展。差分法也是一种常用的近似解法,其要点是用差商近似地代替微商,从而把原有的微分方程近似地化为代数方程。此外,边界积分方程、边界元法和加权残数法对解决某些问题也是有效的手段。

数学d性力学的典型问题 有以下几类:

①一般性理论 它探讨解的共性和一般性的求解方法。一般性理论中,最核心的部分是能量原理(定理),包括虚功原理(虚位移原理、虚应力原理)、功的互等定理、最小势能原理、最小余能原理、赫林格-瑞斯纳二类变量广义变分原理和胡海昌-鹫津久一郎三类变量广义变分原理等。解的存在性、唯一性、解析性、平均值定理以及近似解的收敛性等,也都和能量原理有密切联系。这些一般性理论,是建立各种近似解法和建立工程结构实用理论的依据。

一般性理论的另一重要方面是未知函数的归并理论,其主要内容是将d性力学问题归为求解少数几个函数,这些函数常称为应力函数和位移函数。

②柱体扭转和弯曲 一个侧面不受外力的细长柱体,在两端面上的外力作用下会产生扭转和弯曲。根据圣维南原理,柱体中间部分的应力状态只与作用在端面上载荷的合力和合力矩有关,而与载荷的具体分布无关。因此,柱体中间部分的应力有以下的表达式:

这里的x、y轴为横截面的两个主轴;z轴平行于柱体的母线;为应力分量,A为横截面的面积;Ix和Iy为横截面对x轴和y轴的惯性矩(见截面的几何性质);N、Mx和My分别为作用在截面上的轴向合力、对x轴和y轴的弯矩。弯矩Mx、My是坐标z的线性函数,可用材料力学的方法求得。式(11)给出的与材料力学的解相同,但给出的剪应力比材料力学的结果精确。决定的问题最后可归为求解一个平面调和函数的边值问题。

③平面问题 平面问题是d性力学中发展得比较成熟,应用得比较广的一类问题。平面问题可分为平面应力问题和平面应变问题。两者的应用对象不同,但都可归为相同的数学问题——平面双调和函数的边值问题

平面应力问题适用于薄板。若在薄板的两个表面上无外力,而在侧面上有沿厚度均匀分布的载荷(图1),则薄板中的位移和应力有如下特点:

且以及x、y方向的位移u、v都与坐标z无关。对于各向同性材料,上述五个不等于零的量可以用一个应力函数φ(x,y)(艾里应力函数)表示为:

而应力函数φ是一个平面双调和函数,即

平面应变问题适用于长柱体的中间部分。若柱体的两端面固定不动,而作用在侧面上的载荷和坐标z无关,且合力及合力矩等于零(图2),则柱体中间部分的应力和位移有如下特点:

纵向位移ω=0,且、u、v与坐标z无关。对于各向同性的材料,上述五个不等于零的量也可用一个双调和函数φ表示为公式(13),不过须将其中的E和v分别代以

④变截面轴扭转变截面轴受扭时,在截面的过渡区(图3)常有应力集中现象。分析这类问题以取圆柱坐标系(r,θ,z)为方便。在圆柱坐标系中的位移分量和应力分量分别记为u、v、w和

这类问题的力学特点是: u=w=0和

v、和与坐标z无关。上述不等于零的两个剪应力和可用一个应力函数(r,z)表示为:

而满足下列偏微分方程:

这类问题最后归为方程(15)的边值问题。

⑤回转体的轴对称变形各向同性的回转体在轴对称载荷作用下,必然产生轴对称的变形。在圆柱坐标系(r,θ,z)中,轴对称变形的特点是:v=0,=,且u、w、、、和与坐标θ无关。上述不等于零的六个量,可以用一个位移函数(x,y)表示为:

其中△是轴对称的拉昔拉斯算符,即

而是轴对称的双调和函数,即

⑥工程结构元件的实用理论 从广义上说,各种工程结构元件的实用理论(如杆、板、壳的实用理论)都是d性力学的特殊分支,而且是最有实用价值的分支。这些实用理论分别依据结构元件形状及其受力的特点,对位移分布作一些合理的简化假设,对广义胡克定律也作相应的简化。这样,就能使数学方程既得到充分简化又保留了主要的力学特性。从d性力学看,这些结构元件的实用理论都是近似理论,其近似性大多表现为按照这些理论计算得到的应力和应变不能严格满足胡克定律。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/11677961.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存