很多人之所以喜欢python,不仅仅因为简单易学、容易入门,更多是因为python有强大的第三方库,那么在机器学习中,python有哪些库可以使用呢?
1、Scikit-learn:最流行的ML库之一,支持很多监督学习和非监督学习算法。基于两个python库,Numpy 和 Scipy,为常见的机器学习和数据挖掘提供一组算法,聚类、回归和分类。
2、Tensorflow:当你使用python编写代码,你可以编译和运行在你的cpu或者GPU上,你不需要写C++或者CUDA的代码,可以运行在GPU集群上。
3、Theano:另一个用于数值计算的优秀类库,类似于Numpy。Theano允许你高效定义,优化和评估涉及多维数组的数学表达式。与众不同的是它利用计算机的GPU,能够比单独在cpu上运行时快100倍进行数据密集型计算。
4、Pandas:非常流行的一个库,提供简单易用且直观的高效数据结构,有许多内建的方法来分组、组合数据和过滤以及执行时间序列分析。可以轻松地从sql数据库、CSV、Excel、JsON文件等不同来源获取数据,并对数据进行 *** 作。
5、Seaborn:一个流行的可视化库,建立在Matplotlib的基础之上,是一个高级库,意味着更容易生成某些类型的图,包含热图、时间序列等。
总结以上是内存溢出为你收集整理的从事python机器学习,这些三方库很重要!全部内容,希望文章能够帮你解决从事python机器学习,这些三方库很重要!所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)