5、Python语法入门之垃圾回收机制

5、Python语法入门之垃圾回收机制,第1张

概述 5、Python语法入门之垃圾回收机制一引入二、什么是垃圾回收机制?三、为什么要用垃圾回收机制?当一个变量值不再绑定任何引用时,我们就无法再访问到该变量值了,该变量值自然就是没有用的,就应该被当成一个垃圾回收。垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回

 

5、Python语法入门之垃圾回收机制

一 引入

二、什么是垃圾回收机制?

三、为什么要用垃圾回收机制?

当一个变量值不再绑定任何引用时,我们就无法再访问到该变量值了,该变量值自然就是没有用的,就应该被当成一个垃圾回收。垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间。管理内存是一件重要且繁杂的事情,而python解释器自带的垃圾回收机制把程序员从繁杂的内存管理中解放出来。

四、理解GC原理需要储备的知识

4.1、堆区与栈区

在定义变量时,变量名与变量值都是需要存储的,分别对应内存中的两块区域:堆区与栈区。

# 1、变量名与值内存地址的关联关系存放于栈区

# 2、变量值存放于堆区,内存管理回收的则是堆区的内容,

定义了两个变量x = 10、y = 20,详解如下图,

当我们执行x=y时,内存中的栈区与堆区变化如下

4.2 直接引用与间接引用

直接引用指的是从栈区出发直接引用到的内存地址。

间接引用指的是从栈区出发引用到堆区后,再通过进一步引用才能到达的内存地址。

l2 = [20, 30]  # 列表本身被变量名l2直接引用,包含的元素被列表间接引用
x = 10  # 值10被变量名x直接引用
l1 = [x, l2]  # 列表本身被变量名l1直接引用,包含的元素被列表间接引用

图解如下:

五、垃圾回收机制原理分析

5.1、引用计数

5.2、引用计数的问题与解决方案

5.2.1 问题一:循环引用

循环引用(也称交叉引用)

>>> del l1 # 列表1的引用计数减1,列表1的引用计数变为1
>>> del l2 # 列表2的引用计数减1,列表2的引用计数变为1

此时,只剩下列表1与列表2之间的相互引用

但此时两个列表的引用计数均不为0,但两个列表不再被任何其他对象关联,没有任何人可以再引用到它们,所以它俩占用内存空间应该被回收,但由于相互引用的存在,每一个对象的引用计数都不为0,因此这些对象所占用的内存永远不会被释放,所以循环引用是致命的,这与手动进行内存管理所产生的内存泄露毫无区别。 所以Python引入了“标记-清除” 与“分代回收”来分别解决引用计数的循环引用与效率低的问题

5.2.2 解决方案:标记-清除

标记/清除算法的做法是当应用程序可用的内存空间被耗尽的时,就会停止整个程序,然后进行两项工作,第一项则是标记,第二项则是清除。

#1、标记
通俗地讲就是:
栈区相当于“根”,凡是从根出发可以访达(直接或间接引用)的,都称之为“有根之人”,有根之人当活,无根之人当死。

具体地:标记的过程其实就是,遍历所有的GC Roots对象(栈区中的所有内容或者线程都可以作为GC Roots对象),然后将所有GC Roots的对象可以直接或间接访问到的对象标记为存活的对象,其余的均为非存活对象,应该被清除。

#2、清除
清除的过程将遍历堆中所有的对象,将没有标记的对象全部清除掉。

基于上例的循环引用,当我们同时删除l1与l2时,会清理到栈区中l1与l2的内容以及直接引用关系这样在启用标记清除算法时,从栈区出发,没有任何一条直接或间接引用可以访达l1与l2,即l1与l2成了“无根之人”,于是l1与l2都没有被标记为存活,二者会被清理掉,这样就解决了循环引用带来的内存泄漏问题。

5.2.3 问题二:效率问题

基于引用计数的回收机制,每次回收内存,都需要把所有对象的引用计数都遍历一遍,这是非常消耗时间的,于是引入了分代回收来提高回收效率,分代回收采用的是用“空间换时间”的策略。

5.2.4 解决方案:分代回收

分代回收的核心思想是:在历经多次扫描的情况下,都没有被回收的变量,gc机制就会认为,该变量是常用变量,gc对其扫描的频率会降低,具体实现原理如下:

分代指的是根据存活时间来为变量划分不同等级(也就是不同的代)

新定义的变量,放到新生代这个等级中,假设每隔1分钟扫描新生代一次,如果发现变量依然被引用,那么该对象的权重(权重本质就是个整数)加一,当变量的权重大于某个设定得值(假设为3),会将它移动到更高一级的青春代,青春代的gc扫描的频率低于新生代(扫描时间间隔更长),假设5分钟扫描青春代一次,这样每次gc需要扫描的变量的总个数就变少了,节省了扫描的总时间,接下来,青春代中的对象,也会以同样的方式被移动到老年代中。也就是等级(代)越高,被垃圾回收机制扫描的频率越低

回收依然是使用引用计数作为回收的依据

虽然分代回收可以起到提升效率的效果,但也存在一定的缺点:

#例如一个变量刚刚从新生代移入青春代,该变量的绑定关系就解除了,该变量应该被回收,但青春代的扫描频率低于新生代,这就到导致了应该被回收的垃圾没有得到及时地清理。

没有十全十美的方案:
毫无疑问,如果没有分代回收,即引用计数机制一直不停地对所有变量进行全体扫描,可以更及时地清理掉垃圾占用的内存,但这种一直不停地对所有变量进行全体扫描的方式效率极低,所以我们只能将二者中和。

综上
垃圾回收机制是在清理垃圾&释放内存的大背景下,允许分代回收以极小部分垃圾不会被及时释放为代价,以此换取引用计数整体扫描频率的降低,从而提升其性能,这是一种以空间换时间的解决方案目录
总结

以上是内存溢出为你收集整理的5、Python语法入门之垃圾回收机制全部内容,希望文章能够帮你解决5、Python语法入门之垃圾回收机制所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1188609.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-03
下一篇 2022-06-03

发表评论

登录后才能评论

评论列表(0条)

保存