我使用了他们的given code.并按照他们的指示生成了单帧模型.但是当试图训练LSTM混合网络时,它失败了.我已经在instructions.中提到了必要的更改
我运行的命令是caffe train -solver lstm_solver_flow.prototxt -weights singleframe_flow / snaps / snapshots_singleFrame_flow_v2_iter_50000.caffemodel
我得到的输出是
I0323 18:16:30.685951 9123 net.cpp:205] This network produces output lossI0323 18:16:30.685967 9123 net.cpp:446] Collecting Learning Rate and Weight Decay.I0323 18:16:30.685976 9123 net.cpp:218] Network initialization done.I0323 18:16:30.685982 9123 net.cpp:219] Memory required for data: 817327112I0323 18:16:30.686339 9123 solver.cpp:42] Solver scaffolding done.I0323 18:16:30.686388 9123 caffe.cpp:86] Finetuning from singleframe_flow/snaps/snapshots_singleFrame_flow_v2_iter_50000.caffemodelI0323 18:16:33.377488 9123 solver.cpp:247] Solving lstm_jointsI0323 18:16:33.377518 9123 solver.cpp:248] Learning Rate Policy: stepI0323 18:16:33.391726 9123 solver.cpp:291] Iteration 0,Testing net (#0)Traceback (most recent call last): file "/home/anilil/projects/lstm/lisa-caffe-public/examples/LRCN_activity_recognition/sequence_input_layer.py",line 220,in forward new_result_data = [None]*len(self.batch_advancer.result['data']) KeyError: 'data'terminate called after throwing an instance of 'boost::python::error_already_set'*** Aborted at 1458753393 (unix time) try "date -d @1458753393" if you are using GNU date ***PC: @ 0x7f243731bcc9 (unkNown)*** SIGABRT (@0x23a3) received by PID 9123 (TID 0x7f24389077c0) from PID 9123; stack trace: *** @ 0x7f243731bd40 (unkNown) @ 0x7f243731bcc9 (unkNown) @ 0x7f243731f0d8 (unkNown) @ 0x7f2437920535 (unkNown) @ 0x7f243791e6d6 (unkNown) @ 0x7f243791e703 (unkNown) @ 0x7f243791e976 (unkNown) @ 0x7f2397bb5bfd caffe::PythonLayer<>::Forward_cpu() @ 0x7f243821d87f caffe::Net<>::ForwardFromTo() @ 0x7f243821dca7 caffe::Net<>::ForwardPrefilled() @ 0x7f243822fd77 caffe::Solver<>::test() @ 0x7f2438230636 caffe::Solver<>::TestAll() @ 0x7f243823837b caffe::Solver<>::Step() @ 0x7f2438238d5f caffe::Solver<>::Solve() @ 0x4071c8 train() @ 0x405701 main @ 0x7f2437306ec5 (unkNown) @ 0x405cad (unkNown) @ 0x0 (unkNown)run_lstm_flow.sh: line 8: 9123 Aborted (core dumped) GLOG_logtostderr=1 $TOolS/caffe train -solver lstm_solver_flow.prototxt -weights singleframe_flow/snaps/snapshots_singleFrame_flow_v2_iter_50000.caffemodelDone.
这是我更改的sequence_input_layer.py和prototext文件.
我的输入训练和测试网络是这个format.
我认为主要问题是##重新排列数据:LSTM将输入视为[vIDeo0_frame0,vIDeo1_frame0,…],但数据当前排列为[vIDeo0_frame0,vIDeo0_frame1,…]
我无法解决这个问题让我很困惑.
但我可能错了.
processed_image = transformer.preprocess('data_in',data_in)
使用由lisa-caffe-public-lstm_vIDeo_deploy / python / caffe / io.py导入的scikit-image库函数.对于较新的版本,transformer.preprocess()崩溃,因此processImageCrop()函数没有返回,因此KeyError:’data’.
简而言之,你应该使用scikit-image-0.9.3来摆脱你的错误:)希望有帮助:)
总结以上是内存溢出为你收集整理的python – LSTM中的长期递归卷积网络纸张再现错误?全部内容,希望文章能够帮你解决python – LSTM中的长期递归卷积网络纸张再现错误?所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)