pytorch实现mnist分类的示例讲解

pytorch实现mnist分类的示例讲解,第1张

概述pytorch实现mnist分类示例讲解 torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具. torchvision.datasets中包含了以下数据集 MNIST COCO(用于图像标注和目标检测)(Captioning and Detection) LSUN Classification ImageFolder Imagenet-12 CIFAR10 and CIFAR100 STL10 torchvision.models torchvision.models模块的 子模块中包含以下模型结构. Ale

torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具。

torchvision.datasets中包含了以下数据集

MNIST
COCO(用于图像标注和目标检测)(Captioning and Detection)
LSUN Classification
ImageFolder
Imagenet-12
CIFAR10 and CIFAR100
STL10

torchvision.models

torchvision.models模块的 子模块中包含以下模型结构。
AlexNet
VGG
resnet
SqueeZenet
DenseNet You can construct a model with random weights by calling its constructor:

pytorch torchvision transform

对PIL.Image进行变换

from __future__ import print_functionimport argparse #Python 命令行解析工具import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torchvision import datasets,transformsclass Net(nn.Module):  def __init__(self):    super(Net,self).__init__()    self.conv1 = nn.Conv2d(1,10,kernel_size=5)    self.conv2 = nn.Conv2d(10,20,kernel_size=5)    self.conv2_drop = nn.Dropout2d()    self.fc1 = nn.linear(320,50)    self.fc2 = nn.linear(50,10)  def forward(self,x):    x = F.relu(F.max_pool2d(self.conv1(x),2))    x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)),2))    x = x.vIEw(-1,320)    x = F.relu(self.fc1(x))    x = F.dropout(x,training=self.training)    x = self.fc2(x)    return F.log_softmax(x,dim=1)def train(args,model,device,train_loader,optimizer,epoch):  model.train()  for batch_IDx,(data,target) in enumerate(train_loader):    data,target = data.to(device),target.to(device)    optimizer.zero_grad()    output = model(data)    loss = F.nll_loss(output,target)    loss.backward()    optimizer.step()    if batch_IDx % args.log_interval == 0:      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(        epoch,batch_IDx * len(data),len(train_loader.dataset),100. * batch_IDx / len(train_loader),loss.item()))def test(args,test_loader):  model.eval()  test_loss = 0  correct = 0  with torch.no_grad():    for data,target in test_loader:      data,target.to(device)      output = model(data)      test_loss += F.nll_loss(output,target,size_average=False).item() # sum up batch loss      pred = output.max(1,keepdim=True)[1] # get the index of the max log-probability      correct += pred.eq(target.vIEw_as(pred)).sum().item()  test_loss /= len(test_loader.dataset)  print('\nTest set: Average loss: {:.4f},Accuracy: {}/{} ({:.0f}%)\n'.format(    test_loss,correct,len(test_loader.dataset),100. * correct / len(test_loader.dataset)))def main():  # Training settings  parser = argparse.ArgumentParser(description='PyTorch MNIST Example')  parser.add_argument('--batch-size',type=int,default=64,Metavar='N',help='input batch size for training (default: 64)')  parser.add_argument('--test-batch-size',default=1000,help='input batch size for testing (default: 1000)')  parser.add_argument('--epochs',default=10,help='number of epochs to train (default: 10)')  parser.add_argument('--lr',type=float,default=0.01,Metavar='LR',help='learning rate (default: 0.01)')  parser.add_argument('--momentum',default=0.5,Metavar='M',help='SGD momentum (default: 0.5)')  parser.add_argument('--no-cuda',action='store_true',default=False,help='disables CUDA training')  parser.add_argument('--seed',default=1,Metavar='S',help='random seed (default: 1)')  parser.add_argument('--log-interval',help='how many batches to wait before logging training status')  args = parser.parse_args()  use_cuda = not args.no_cuda and torch.cuda.is_available()  torch.manual_seed(args.seed)  device = torch.device("cuda" if use_cuda else "cpu")  kwargs = {'num_workers': 1,'pin_memory': True} if use_cuda else {}  train_loader = torch.utils.data.DataLoader(    datasets.MNIST('../data',train=True,download=True,transform=transforms.Compose([              transforms.ToTensor(),transforms.normalize((0.1307,),(0.3081,))            ])),batch_size=args.batch_size,shuffle=True,**kwargs)  test_loader = torch.utils.data.DataLoader(    datasets.MNIST('../data',train=False,batch_size=args.test_batch_size,**kwargs)  model = Net().to(device)  optimizer = optim.SGD(model.parameters(),lr=args.lr,momentum=args.momentum)  for epoch in range(1,args.epochs + 1):    train(args,epoch)    test(args,test_loader)if __name__ == '__main__':  main()

以上这篇pytorch实现mnist分类的示例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

总结

以上是内存溢出为你收集整理的pytorch实现mnist分类的示例讲解全部内容,希望文章能够帮你解决pytorch实现mnist分类的示例讲解所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1199419.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存