Python搞定pandas入门实例

Python搞定pandas入门实例,第1张

概述Python搞定pandas入门实例 对python这个高级语言感兴趣的小伙伴,下面一起跟随内存溢出 jb51.cc的小编两巴掌来看看吧!

习惯上,我们做以下导入

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [1]: import pandas as pdIn [2]: import numpy as npIn [3]: import matplotlib.pyplot as plt# End www.jb51.cc
创建对象

使用传递的值列表序列创建序列,让pandas创建默认整数索引

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [4]: s = pd.SerIEs([1,3,5,np.nan,6,8])In [5]: sOut[5]: 0     11     32     53   NaN4     65     8dtype: float64# End www.jb51.cc

使用传递的numpy数组创建数据帧,并使用日期索引和标记列.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [6]: dates = pd.date_range('20130101',periods=6)In [7]: datesOut[7]: [2013-01-01,...,2013-01-06]Length: 6,Freq: D,Timezone: None In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=List('ABCD'))In [9]: dfOut[9]:                    A         B         C         D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.0874012013-01-06 -0.673690  0.113648 -1.478427  0.524988# End www.jb51.cc

使用传递的可转换序列的字典对象创建数据帧.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [10]: df2 = pd.DataFrame({ 'A' : 1.,....:                      'B' : pd.Timestamp('20130102'),....:                      'C' : pd.SerIEs(1,index=List(range(4)),dtype='float32'),....:                      'D' : np.array([3] * 4,dtype='int32'),....:                      'E' : pd.Categorical(["test","train","test","train"]),....:                      'F' : 'foo' })   ....: In [11]: df2Out[11]:    A          B  C  D      E    F0  1 2013-01-02  1  3   test  foo1  1 2013-01-02  1  3  train  foo2  1 2013-01-02  1  3   test  foo3  1 2013-01-02  1  3  train  foo# End www.jb51.cc

所有明确类型

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [12]: df2.dtypesOut[12]: A           float64B    datetime64[ns]C           float32D             int32E          categoryF            objectdtype: object# End www.jb51.cc

如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [13]: df2.df2.A                  df2.Boxplotdf2.abs                df2.Cdf2.add                df2.clipdf2.add_prefix         df2.clip_lowerdf2.add_suffix         df2.clip_upperdf2.align              df2.columnsdf2.all                df2.combinedf2.any                df2.combineAdddf2.append             df2.combine_firstdf2.apply              df2.combineMultdf2.applymap           df2.compounddf2.as_blocks          df2.consolIDatedf2.asfreq             df2.convert_objectsdf2.as_matrix          df2.copydf2.astype             df2.corrdf2.at                 df2.corrwithdf2.at_time            df2.countdf2.axes               df2.covdf2.B                  df2.cummaxdf2.between_time       df2.cummindf2.bfill              df2.cumproddf2.blocks             df2.cumsumdf2.bool               df2.D# End www.jb51.cc

如你所见,列 A,B,C,和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.

查看数据

参阅基础部分

查看帧顶部和底部行

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [14]: df.head()Out[14]:                    A         B         C         D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.087401 In [15]: df.tail(3)Out[15]:                    A         B         C         D2013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.0874012013-01-06 -0.673690  0.113648 -1.478427  0.524988# End www.jb51.cc

显示索引,列,和底层numpy数据

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [16]: df.indexOut[16]: [2013-01-01,Timezone: None In [17]: df.columnsOut[17]: Index([u'A',u'B',u'C',u'D'],dtype='object') In [18]: df.valuesOut[18]: array([[ 0.4691,-0.2829,-1.5091,-1.1356],[ 1.2121,-0.1732,0.1192,-1.0442],[-0.8618,-2.1046,-0.4949,1.0718],[ 0.7216,-0.7068,-1.0396,0.2719],[-0.425,0.567,0.2762,-1.0874],[-0.6737,0.1136,-1.4784,0.525 ]])# End www.jb51.cc

描述显示数据快速统计摘要

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [19]: df.describe()Out[19]:               A         B         C         Dcount  6.000000  6.000000  6.000000  6.000000mean   0.073711 -0.431125 -0.687758 -0.233103std    0.843157  0.922818  0.779887  0.973118min   -0.861849 -2.104569 -1.509059 -1.13563225%   -0.611510 -0.600794 -1.368714 -1.07661050%    0.022070 -0.228039 -0.767252 -0.38618875%    0.658444  0.041933 -0.034326  0.461706max    1.212112  0.567020  0.276232  1.071804# End www.jb51.cc
转置数据
# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [20]: df.TOut[20]:    2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988# End www.jb51.cc

按轴排序

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [21]: df.sort_index(axis=1,ascending=False)Out[21]:                    D         C         B         A2013-01-01 -1.135632 -1.509059 -0.282863  0.4691122013-01-02 -1.044236  0.119209 -0.173215  1.2121122013-01-03  1.071804 -0.494929 -2.104569 -0.8618492013-01-04  0.271860 -1.039575 -0.706771  0.7215552013-01-05 -1.087401  0.276232  0.567020 -0.4249722013-01-06  0.524988 -1.478427  0.113648 -0.673690# End www.jb51.cc

按值排序

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [22]: df.sort(columns='B')Out[22]:                    A         B         C         D2013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-06 -0.673690  0.113648 -1.478427  0.5249882013-01-05 -0.424972  0.567020  0.276232 -1.087401# End www.jb51.cc

选择器

注释: 标准Python / Numpy表达式可以完成这些互动工作,但在生产代码中,我们推荐使用优化的pandas数据访问方法,.at,.iat,.loc,.iloc 和 .ix.

参阅索引文档 索引和选择数据 and 多索引/高级索引

 

读取

选择单列,这会产生一个序列,等价df.A

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [23]: df['A']Out[23]: 2013-01-01    0.4691122013-01-02    1.2121122013-01-03   -0.8618492013-01-04    0.7215552013-01-05   -0.4249722013-01-06   -0.673690Freq: D,name: A,dtype: float64# End www.jb51.cc

 

使用[]选择行片断

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [24]: df[0:3]Out[24]:                    A         B         C         D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.071804 In [25]: df['20130102':'20130104']Out[25]:                    A         B         C         D2013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.271860# End www.jb51.cc

使用标签选择

更多信息请参阅按标签选择

使用标签获取横截面

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [26]: df.loc[dates[0]]Out[26]: A    0.469112B   -0.282863C   -1.509059D   -1.135632name: 2013-01-01 00:00:00,dtype: float64# End www.jb51.cc

使用标签选择多轴

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [27]: df.loc[:,['A','B']]Out[27]:                    A         B2013-01-01  0.469112 -0.2828632013-01-02  1.212112 -0.1732152013-01-03 -0.861849 -2.1045692013-01-04  0.721555 -0.7067712013-01-05 -0.424972  0.5670202013-01-06 -0.673690  0.113648# End www.jb51.cc

 

显示标签切片,包含两个端点

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [28]: df.loc['20130102':'20130104','B']]Out[28]:                    A         B2013-01-02  1.212112 -0.1732152013-01-03 -0.861849 -2.1045692013-01-04  0.721555 -0.706771# End www.jb51.cc

降低返回对象维度

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [29]: df.loc['20130102','B']]Out[29]: A    1.212112B   -0.173215name: 2013-01-02 00:00:00,dtype: float64# End www.jb51.cc

获取标量值

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [30]: df.loc[dates[0],'A']Out[30]: 0.46911229990718628# End www.jb51.cc

快速访问并获取标量数据 (等价上面的方法)

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [31]: df.at[dates[0],'A']Out[31]: 0.46911229990718628# End www.jb51.cc

按位置选择

更多信息请参阅按位置参阅

传递整数选择位置

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [32]: df.iloc[3]Out[32]: A    0.721555B   -0.706771C   -1.039575D    0.271860name: 2013-01-04 00:00:00,dtype: float64# End www.jb51.cc

使用整数片断,效果类似numpy/python

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [33]: df.iloc[3:5,0:2]Out[33]:                    A         B2013-01-04  0.721555 -0.7067712013-01-05 -0.424972  0.567020# End www.jb51.cc

使用整数偏移定位列表,效果类似 numpy/python 样式

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [34]: df.iloc[[1,2,4],[0,2]]Out[34]:                    A         C2013-01-02  1.212112  0.1192092013-01-03 -0.861849 -0.4949292013-01-05 -0.424972  0.276232# End www.jb51.cc

显式行切片

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [35]: df.iloc[1:3,:]Out[35]:                    A         B         C         D2013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.071804# End www.jb51.cc

显式列切片

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [36]: df.iloc[:,1:3]Out[36]:                    B         C2013-01-01 -0.282863 -1.5090592013-01-02 -0.173215  0.1192092013-01-03 -2.104569 -0.4949292013-01-04 -0.706771 -1.0395752013-01-05  0.567020  0.2762322013-01-06  0.113648 -1.478427# End www.jb51.cc

显式获取一个值

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [37]: df.iloc[1,1]Out[37]: -0.17321464905330861# End www.jb51.cc

 

快速访问一个标量(等同上个方法)

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [38]: df.iat[1,1]Out[38]: -0.17321464905330861# End www.jb51.cc
布尔索引

使用单个列的值选择数据.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [39]: df[df.A > 0]Out[39]:                    A         B         C         D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-04  0.721555 -0.706771 -1.039575  0.271860# End www.jb51.cc

where *** 作.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [40]: df[df > 0]Out[40]:                    A         B         C         D2013-01-01  0.469112       NaN       NaN       NaN2013-01-02  1.212112       NaN  0.119209       NaN2013-01-03       NaN       NaN       NaN  1.0718042013-01-04  0.721555       NaN       NaN  0.2718602013-01-05       NaN  0.567020  0.276232       NaN2013-01-06       NaN  0.113648       NaN  0.524988# End www.jb51.cc

 

使用 isin() 筛选:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [41]: df2 = df.copy()In [42]: df2['E']=['one','one','two','three','four','three'] In [43]: df2Out[43]:                    A         B         C         D      E2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three In [44]: df2[df2['E'].isin(['two','four'])]Out[44]:                    A         B         C         D     E2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four# End www.jb51.cc
赋值

赋值一个新列,通过索引自动对齐数据

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [45]: s1 = pd.SerIEs([1,4,6],index=pd.date_range('20130102',periods=6))In [46]: s1Out[46]: 2013-01-02    12013-01-03    22013-01-04    32013-01-05    42013-01-06    52013-01-07    6Freq: D,dtype: int64 In [47]: df['F'] = s1# End www.jb51.cc

按标签赋值

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [48]: df.at[dates[0],'A'] = 0# End www.jb51.cc

按位置赋值

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [49]: df.iat[0,1] = 0# End www.jb51.cc

通过numpy数组分配赋值

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [50]: df.loc[:,'D'] = np.array([5] * len(df))# End www.jb51.cc

之前的 *** 作结果

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [51]: dfOut[51]:                    A         B         C  D   F2013-01-01  0.000000  0.000000 -1.509059  5 NaN2013-01-02  1.212112 -0.173215  0.119209  5   12013-01-03 -0.861849 -2.104569 -0.494929  5   22013-01-04  0.721555 -0.706771 -1.039575  5   32013-01-05 -0.424972  0.567020  0.276232  5   42013-01-06 -0.673690  0.113648 -1.478427  5   5# End www.jb51.cc

where *** 作赋值.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [52]: df2 = df.copy()In [53]: df2[df2 > 0] = -df2In [54]: df2Out[54]:                    A         B         C  D   F2013-01-01  0.000000  0.000000 -1.509059 -5 NaN2013-01-02 -1.212112 -0.173215 -0.119209 -5  -12013-01-03 -0.861849 -2.104569 -0.494929 -5  -22013-01-04 -0.721555 -0.706771 -1.039575 -5  -32013-01-05 -0.424972 -0.567020 -0.276232 -5  -42013-01-06 -0.673690 -0.113648 -1.478427 -5  -5# End www.jb51.cc

 

丢失的数据

pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section

重建索引允许更改/添加/删除指定轴索引,并返回数据副本.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [55]: df1 = df.reindex(index=dates[0:4],columns=List(df.columns) + ['E'])In [56]: df1.loc[dates[0]:dates[1],'E'] = 1In [57]: df1Out[57]:                    A         B         C  D   F   E2013-01-01  0.000000  0.000000 -1.509059  5 NaN   12013-01-02  1.212112 -0.173215  0.119209  5   1   12013-01-03 -0.861849 -2.104569 -0.494929  5   2 NaN2013-01-04  0.721555 -0.706771 -1.039575  5   3 NaN# End www.jb51.cc

删除任何有丢失数据的行.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [58]: df1.dropna(how='any')Out[58]:                    A         B         C  D  F  E2013-01-02  1.212112 -0.173215  0.119209  5  1  1# End www.jb51.cc

填充丢失数据

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [59]: df1.fillna(value=5)Out[59]:                    A         B         C  D  F  E2013-01-01  0.000000  0.000000 -1.509059  5  5  12013-01-02  1.212112 -0.173215  0.119209  5  1  12013-01-03 -0.861849 -2.104569 -0.494929  5  2  52013-01-04  0.721555 -0.706771 -1.039575  5  3  5# End www.jb51.cc

获取值是否nan的布尔标记

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [60]: pd.isnull(df1)Out[60]:                 A      B      C      D      F      E2013-01-01  False  False  False  False   True  False2013-01-02  False  False  False  False  False  False2013-01-03  False  False  False  False  False   True2013-01-04  False  False  False  False  False   True# End www.jb51.cc
运算

参阅二元运算基础

统计

计算时一般不包括丢失的数据

执行描述性统计

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [61]: df.mean()Out[61]: A   -0.004474B   -0.383981C   -0.687758D    5.000000F    3.000000dtype: float64# End www.jb51.cc

在其他轴做相同的运算

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [62]: df.mean(1)Out[62]: 2013-01-01    0.8727352013-01-02    1.4316212013-01-03    0.7077312013-01-04    1.3950422013-01-05    1.8836562013-01-06    1.592306Freq: D,dtype: float64# End www.jb51.cc

用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [63]: s = pd.SerIEs([1,8],index=dates).shift(2)In [64]: sOut[64]: 2013-01-01   NaN2013-01-02   NaN2013-01-03     12013-01-04     32013-01-05     52013-01-06   NaNFreq: D,dtype: float64 In [65]: df.sub(s,axis='index')Out[65]:                    A         B         C   D   F2013-01-01       NaN       NaN       NaN NaN NaN2013-01-02       NaN       NaN       NaN NaN NaN2013-01-03 -1.861849 -3.104569 -1.494929   4   12013-01-04 -2.278445 -3.706771 -4.039575   2   02013-01-05 -5.424972 -4.432980 -4.723768   0  -12013-01-06       NaN       NaN       NaN NaN NaNApply# End www.jb51.cc

在数据上使用函数

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [66]: df.apply(np.cumsum)Out[66]:                    A         B         C   D   F2013-01-01  0.000000  0.000000 -1.509059   5 NaN2013-01-02  1.212112 -0.173215 -1.389850  10   12013-01-03  0.350263 -2.277784 -1.884779  15   32013-01-04  1.071818 -2.984555 -2.924354  20   62013-01-05  0.646846 -2.417535 -2.648122  25  102013-01-06 -0.026844 -2.303886 -4.126549  30  15 In [67]: df.apply(lambda x: x.max() - x.min())Out[67]: A    2.073961B    2.671590C    1.785291D    0.000000F    4.000000dtype: float64# End www.jb51.cc
直方图

请参阅 直方图和离散化

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [68]: s = pd.SerIEs(np.random.randint(0,7,size=10))In [69]: sOut[69]: 0    41    22    13    24    65    46    47    68    49    4dtype: int32 In [70]: s.value_counts()Out[70]: 4    56    22    21    1dtype: int64# End www.jb51.cc
字符串方法

序列可以使用一些字符串处理方法很轻易 *** 作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [71]: s = pd.SerIEs(['A','B','C','Aaba','Baca','CABA','dog','cat'])In [72]: s.str.lower()Out[72]: 0       a1       b2       c3    aaba4    baca5     NaN6    caba7     dog8     catdtype: object# End www.jb51.cc

合并

连接

pandas提供各种工具以简便合并序列,数据桢,和组合对象,在连接/合并类型 *** 作中使用多种类型索引和相关数学函数.

请参阅合并部分

把pandas对象连接到一起

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [73]: df = pd.DataFrame(np.random.randn(10,4))In [74]: dfOut[74]:           0         1         2         30 -0.548702  1.467327 -1.015962 -0.4830751  1.637550 -1.217659 -0.291519 -1.7455052 -0.263952  0.991460 -0.919069  0.2660463 -0.709661  1.669052  1.037882 -1.7057754 -0.919854 -0.042379  1.247642 -0.0099205  0.290213  0.495767  0.362949  1.5481066 -1.131345 -0.089329  0.337863 -0.9458677 -0.932132  1.956030  0.017587 -0.0166928 -0.575247  0.254161 -1.143704  0.2158979  1.193555 -0.077118 -0.408530 -0.862495 # break it into pIEcesIn [75]: pIEces = [df[:3],df[3:7],df[7:]]In [76]: pd.concat(pIEces)Out[76]:           0         1         2         30 -0.548702  1.467327 -1.015962 -0.4830751  1.637550 -1.217659 -0.291519 -1.7455052 -0.263952  0.991460 -0.919069  0.2660463 -0.709661  1.669052  1.037882 -1.7057754 -0.919854 -0.042379  1.247642 -0.0099205  0.290213  0.495767  0.362949  1.5481066 -1.131345 -0.089329  0.337863 -0.9458677 -0.932132  1.956030  0.017587 -0.0166928 -0.575247  0.254161 -1.143704  0.2158979  1.193555 -0.077118 -0.408530 -0.862495# End www.jb51.cc

连接

sql样式合并. 请参阅 数据库style联接

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [77]: left = pd.DataFrame({'key': ['foo','foo'],'lval': [1,2]})In [78]: right = pd.DataFrame({'key': ['foo','rval': [4,5]})In [79]: leftOut[79]:    key  lval0  foo     11  foo     2 In [80]: rightOut[80]:    key  rval0  foo     41  foo     5 In [81]: pd.merge(left,right,on='key')Out[81]:    key  lval  rval0  foo     1     41  foo     1     52  foo     2     43  foo     2     5# End www.jb51.cc

添加

 

添加行到数据增. 参阅 添加

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [82]: df = pd.DataFrame(np.random.randn(8,columns=['A','D'])In [83]: dfOut[83]:           A         B         C         D0  1.346061  1.511763  1.627081 -0.9905821 -0.441652  1.211526  0.268520  0.0245802 -1.577585  0.396823 -0.105381 -0.5325323  1.453749  1.208843 -0.080952 -0.2646104 -0.727965 -0.589346  0.339969 -0.6932055 -0.339355  0.593616  0.884345  1.5914316  0.141809  0.220390  0.435589  0.1924517 -0.096701  0.803351  1.715071 -0.708758 In [84]: s = df.iloc[3]In [85]: df.append(s,ignore_index=True)Out[85]:           A         B         C         D0  1.346061  1.511763  1.627081 -0.9905821 -0.441652  1.211526  0.268520  0.0245802 -1.577585  0.396823 -0.105381 -0.5325323  1.453749  1.208843 -0.080952 -0.2646104 -0.727965 -0.589346  0.339969 -0.6932055 -0.339355  0.593616  0.884345  1.5914316  0.141809  0.220390  0.435589  0.1924517 -0.096701  0.803351  1.715071 -0.7087588  1.453749  1.208843 -0.080952 -0.264610# End www.jb51.cc

分组

对于“group by”指的是以下一个或多个处理

将数据按某些标准分割为不同的组

在每个独立组上应用函数

组合结果为一个数据结构

请参阅 分组部分

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [86]: df = pd.DataFrame({'A' : ['foo','bar','foo',....:                          'foo',....:                    'B' : ['one',....:                          'two','three'],....:                    'C' : np.random.randn(8),....:                    'D' : np.random.randn(8)})   ....: In [87]: dfOut[87]:      A      B         C         D0  foo    one -1.202872 -0.0552241  bar    one -1.814470  2.3959852  foo    two  1.018601  1.5528253  bar  three -0.595447  0.1665994  foo    two  1.395433  0.0476095  bar    two -0.392670 -0.1364736  foo    one  0.007207 -0.5617577  foo  three  1.928123 -1.623033# End www.jb51.cc

分组然后应用函数统计总和存放到结果组

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [88]: df.groupby('A').sum()Out[88]:             C        DA                     bar -2.802588  2.42611foo  3.146492 -0.63958# End www.jb51.cc

按多列分组为层次索引,然后应用函数

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [89]: df.groupby(['A','B']).sum()Out[89]:                   C         DA   B                        bar one   -1.814470  2.395985    three -0.595447  0.166599    two   -0.392670 -0.136473foo one   -1.195665 -0.616981    three  1.928123 -1.623033    two    2.414034  1.600434# End www.jb51.cc
重塑

请参阅章节 分层索引 和 重塑.

 

堆叠
# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [90]: tuples = List(zip(*[['bar','baz',....:                      'foo','qux','qux'],....:                     ['one',....:                      'one','two']]))   ....: In [91]: index = pd.MultiIndex.from_tuples(tuples,names=['first','second'])In [92]: df = pd.DataFrame(np.random.randn(8,2),index=index,'B'])In [93]: df2 = df[:4]In [94]: df2Out[94]:                      A         Bfirst second                    bar   one     0.029399 -0.542108      two     0.282696 -0.087302baz   one    -1.575170  1.771208      two     0.816482  1.100230# End www.jb51.cc

堆叠 函数 “压缩” 数据桢的列一个级别.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [95]: stacked = df2.stack()In [96]: stackedOut[96]: first  second   bar    one     A    0.029399               B   -0.542108       two     A    0.282696               B   -0.087302baz    one     A   -1.575170               B    1.771208       two     A    0.816482               B    1.100230dtype: float64# End www.jb51.cc

被“堆叠”数据桢或序列(有多个索引作为索引),其堆叠的反向 *** 作是未堆栈,上面的数据默认反堆叠到上一级别:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [97]: stacked.unstack()Out[97]:                      A         Bfirst second                    bar   one     0.029399 -0.542108      two     0.282696 -0.087302baz   one    -1.575170  1.771208      two     0.816482  1.100230 In [98]: stacked.unstack(1)Out[98]: second        one       twofirst                      bar   A  0.029399  0.282696      B -0.542108 -0.087302baz   A -1.575170  0.816482      B  1.771208  1.100230 In [99]: stacked.unstack(0)Out[99]: first          bar       bazsecond                      one    A  0.029399 -1.575170       B -0.542108  1.771208two    A  0.282696  0.816482       B -0.087302  1.100230# End www.jb51.cc

 

数据透视表

查看数据透视表.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [100]: df = pd.DataFrame({'A' : ['one','three'] * 3,.....:                    'B' : ['A','C'] * 4,.....:                    'C' : ['foo','bar'] * 2,.....:                    'D' : np.random.randn(12),.....:                    'E' : np.random.randn(12)})   .....: In [101]: dfOut[101]:         A  B    C         D         E0     one  A  foo  1.418757 -0.1796661     one  B  foo -1.879024  1.2918362     two  C  foo  0.536826 -0.0096143   three  A  bar  1.006160  0.3921494     one  B  bar -0.029716  0.2645995     one  C  bar -1.146178 -0.0574096     two  A  foo  0.100900 -1.4256387   three  B  foo -1.035018  1.0240988     one  C  foo  0.314665 -0.1060629     one  A  bar -0.773723  1.82437510    two  B  bar -1.170653  0.59597411  three  C  bar  0.648740  1.167115# End www.jb51.cc

我们可以从此数据非常容易的产生数据透视表:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [102]: pd.pivot_table(df,values='D',index=['A','B'],columns=['C'])Out[102]: C             bar       fooA     B                    one   A -0.773723  1.418757      B -0.029716 -1.879024      C -1.146178  0.314665three A  1.006160       NaN      B       NaN -1.035018      C  0.648740       NaNtwo   A       NaN  0.100900      B -1.170653       NaN      C       NaN  0.536826# End www.jb51.cc
时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换 *** 作(例如,转换秒数据到5分钟数据),这是很普遍的情况,但并不局限于金融应用,请参阅时间序列章节

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [103]: rng = pd.date_range('1/1/2012',periods=100,freq='S')In [104]: ts = pd.SerIEs(np.random.randint(0,500,len(rng)),index=rng)In [105]: ts.resample('5Min',how='sum')Out[105]: 2012-01-01    25083Freq: 5T,dtype: int32# End www.jb51.cc

时区表示

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [106]: rng = pd.date_range('3/6/2012 00:00',periods=5,freq='D')In [107]: ts = pd.SerIEs(np.random.randn(len(rng)),rng)In [108]: tsOut[108]: 2012-03-06    0.4640002012-03-07    0.2273712012-03-08   -0.4969222012-03-09    0.3063892012-03-10   -2.290613Freq: D,dtype: float64 In [109]: ts_utc = ts.tz_localize('UTC')In [110]: ts_utcOut[110]: 2012-03-06 00:00:00+00:00    0.4640002012-03-07 00:00:00+00:00    0.2273712012-03-08 00:00:00+00:00   -0.4969222012-03-09 00:00:00+00:00    0.3063892012-03-10 00:00:00+00:00   -2.290613Freq: D,dtype: float64# End www.jb51.cc

转换到其它时区

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [111]: ts_utc.tz_convert('US/Eastern')Out[111]: 2012-03-05 19:00:00-05:00    0.4640002012-03-06 19:00:00-05:00    0.2273712012-03-07 19:00:00-05:00   -0.4969222012-03-08 19:00:00-05:00    0.3063892012-03-09 19:00:00-05:00   -2.290613Freq: D,dtype: float64# End www.jb51.cc

 

转换不同的时间跨度

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [112]: rng = pd.date_range('1/1/2012',freq='M')In [113]: ts = pd.SerIEs(np.random.randn(len(rng)),index=rng)In [114]: tsOut[114]: 2012-01-31   -1.1346232012-02-29   -1.5618192012-03-31   -0.2608382012-04-30    0.2819572012-05-31    1.523962Freq: M,dtype: float64 In [115]: ps = ts.to_period()In [116]: psOut[116]: 2012-01   -1.1346232012-02   -1.5618192012-03   -0.2608382012-04    0.2819572012-05    1.523962Freq: M,dtype: float64 In [117]: ps.to_timestamp()Out[117]: 2012-01-01   -1.1346232012-02-01   -1.5618192012-03-01   -0.2608382012-04-01    0.2819572012-05-01    1.523962Freq: MS,dtype: float64# End www.jb51.cc

 

转换时段并且使用一些运算函数,下例中,我们转换年报11月到季度结束每日上午9点数据

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [118]: prng = pd.period_range('1990Q1','2000Q4',freq='Q-NOV')In [119]: ts = pd.SerIEs(np.random.randn(len(prng)),prng)In [120]: ts.index = (prng.asfreq('M','e') + 1).asfreq('H','s') + 9In [121]: ts.head()Out[121]: 1990-03-01 09:00   -0.9029371990-06-01 09:00    0.0681591990-09-01 09:00   -0.0578731990-12-01 09:00   -0.3682041991-03-01 09:00   -1.144073Freq: H,dtype: float64# End www.jb51.cc
分类

自版本0.15起,pandas可以在数据桢中包含分类. 完整的文档,请查看分类介绍 and the api文档.

In [122]: df = pd.DataFrame({"ID":[1,"raw_grade":['a','b','a','e']})

 

转换原始类别为分类数据类型.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [123]: df["grade"] = df["raw_grade"].astype("category")In [124]: df["grade"]Out[124]: 0    a1    b2    b3    a4    a5    ename: grade,dtype: categoryCategorIEs (3,object): [a,b,e]# End www.jb51.cc

重命令分类为更有意义的名称 (分配到SerIEs.cat.categorIEs对应位置!)

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [125]: df["grade"].cat.categorIEs = ["very good","good","very bad"]# End www.jb51.cc

重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [126]: df["grade"] = df["grade"].cat.set_categorIEs(["very bad","bad","medium","very good"])In [127]: df["grade"]Out[127]: 0    very good1         good2         good3    very good4    very good5     very badname: grade,dtype: categoryCategorIEs (5,object): [very bad,bad,medium,good,very good]# End www.jb51.cc

排列分类中的顺序,不是按词汇排列.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [128]: df.sort("grade")Out[128]:    ID raw_grade      grade5   6         e   very bad1   2         b       good2   3         b       good0   1         a  very good3   4         a  very good4   5         a  very good# End www.jb51.cc

类别列分组,并且也显示空类别.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [129]: df.groupby("grade").size()Out[129]: gradevery bad      1bad         NaNmedium      NaNgood          2very good     3dtype: float64# End www.jb51.cc
绘图

绘图文档.

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [130]: ts = pd.SerIEs(np.random.randn(1000),index=pd.date_range('1/1/2000',periods=1000))In [131]: ts = ts.cumsum()In [132]: ts.plot()Out[132]:# End www.jb51.cc

在数据桢中,可以很方便的绘制带标签列:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [133]: df = pd.DataFrame(np.random.randn(1000,index=ts.index,.....:                   columns=['A','D'])   .....: In [134]: df = df.cumsum()In [135]: plt.figure(); df.plot(); plt.legend(loc='best')Out[135]:# End www.jb51.cc

获取数据输入/输出

CSV

写入csv文件

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [136]: df.to_csv('foo.csv')# End www.jb51.cc

读取csv文件

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [137]: pd.read_csv('foo.csv')Out[137]:      Unnamed: 0          A          B         C          D0    2000-01-01   0.266457  -0.399641 -0.219582   1.1868601    2000-01-02  -1.170732  -0.345873  1.653061  -0.2829532    2000-01-03  -1.734933   0.530468  2.060811  -0.5155363    2000-01-04  -1.555121   1.452620  0.239859  -1.1568964    2000-01-05   0.578117   0.511371  0.103552  -2.4282025    2000-01-06   0.478344   0.449933 -0.741620  -1.9624096    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753..          ...        ...        ...       ...        ...993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368 [1000 rows x 5 columns]# End www.jb51.cc

 

HDF5

读写HDF存储

写入HDF5存储

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [138]: df.to_hdf('foo.h5','df')# End www.jb51.cc

读取HDF5存储

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [139]: pd.read_hdf('foo.h5','df')Out[139]:                     A          B         C          D2000-01-01   0.266457  -0.399641 -0.219582   1.1868602000-01-02  -1.170732  -0.345873  1.653061  -0.2829532000-01-03  -1.734933   0.530468  2.060811  -0.5155362000-01-04  -1.555121   1.452620  0.239859  -1.1568962000-01-05   0.578117   0.511371  0.103552  -2.4282022000-01-06   0.478344   0.449933 -0.741620  -1.9624092000-01-07   1.235339  -0.091757 -1.543861  -1.084753...               ...        ...       ...        ...2002-09-20 -10.628548  -9.153563 -7.883146  28.3139402002-09-21 -10.390377  -8.727491 -6.399645  30.9141072002-09-22  -8.985362  -8.485624 -4.669462  31.3677402002-09-23  -9.558560  -8.781216 -4.499815  30.5184392002-09-24  -9.902058  -9.340490 -4.386639  30.1055932002-09-25 -10.216020  -9.480682 -3.933802  29.7585602002-09-26 -11.856774 -10.671012 -3.216025  29.369368 [1000 rows x 4 columns]# End www.jb51.cc

 

Excel

读写MS Excel

写入excel文件

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [140]: df.to_excel('foo.xlsx',sheet_name='Sheet1')# End www.jb51.cc

读取excel文件

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc In [141]: pd.read_excel('foo.xlsx','Sheet1',index_col=None,na_values=['NA'])Out[141]:                     A          B         C          D2000-01-01   0.266457  -0.399641 -0.219582   1.1868602000-01-02  -1.170732  -0.345873  1.653061  -0.2829532000-01-03  -1.734933   0.530468  2.060811  -0.5155362000-01-04  -1.555121   1.452620  0.239859  -1.1568962000-01-05   0.578117   0.511371  0.103552  -2.4282022000-01-06   0.478344   0.449933 -0.741620  -1.9624092000-01-07   1.235339  -0.091757 -1.543861  -1.084753...               ...        ...       ...        ...2002-09-20 -10.628548  -9.153563 -7.883146  28.3139402002-09-21 -10.390377  -8.727491 -6.399645  30.9141072002-09-22  -8.985362  -8.485624 -4.669462  31.3677402002-09-23  -9.558560  -8.781216 -4.499815  30.5184392002-09-24  -9.902058  -9.340490 -4.386639  30.1055932002-09-25 -10.216020  -9.480682 -3.933802  29.7585602002-09-26 -11.856774 -10.671012 -3.216025  29.369368 [1000 rows x 4 columns]# End www.jb51.cc

陷阱

如果尝试这样 *** 作可能会看到像这样的异常:

# @param 十分钟搞定pandas# @author 内存溢出 jb51.cc|www.www.jb51.cc >>> if pd.SerIEs([False,True,False]):    print("I was true")Traceback    ...ValueError: The truth value of an array is ambiguous. Use a.empty,a.any() or a.all().# End www.jb51.cc
总结

以上是内存溢出为你收集整理的Python搞定pandas入门实例全部内容,希望文章能够帮你解决Python搞定pandas入门实例所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1200056.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存