最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋。有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助。
1.在字典中将键映射到多个值上面
{'b': [4,5,6],'a': [1,2,3]}
有时候我们在统计相同key值的时候,希望把所有相同key的条目添加到以key为键的一个字典中,然后再进行各种 *** 作,这时候我们就可以使用下面的代码进行 *** 作:
from collections import defaultdictd = defaultdict(List)print(d)d['a'].append(1)d['a'].append(2)d['a'].append(3)d['b'].append(4)d['b'].append(5)d['b'].append(6)print(d)print(d.get("a"))print(d.keys())print([d.get(i) for i in d])
这里是使用了collections中的方法,这里面还拥有很多有用的方法,我们有时间在继续进行深入了解。
上面代码运行结果:
defaultdict(,{})defaultdict(,{'b': [4,3]})[1,3]dict_keys(['b','a'])[[4,[1,3]]
我们将数据填入之后,相当于进行快速分组,然后遍历每个组就可以统计一些我们需要的数据。
2.迅速转换字典键值对
data = {...}zip(data.values(),data.keys())
data是我们的格式数据,使用zip后进行快速键值转换,然后可以使用max,min之类函数进行数据 *** 作。
3.通过公共键对字典进行排序
from operator import itemgetterdata = [ {'name': "bran","uID": 101},{'name': "xisi","uID": 102},{'name': "land","uID": 103}]print(sorted(data,key=itemgetter("name")))print(sorted(data,key=itemgetter("uID")))
数据格式就是data,我们想要对name或者uID进行排序我们就是用代码中的方法。
运行结果:
[{'name': 'bran','uID': 101},{'name': 'land','uID': 103},{'name': 'xisi','uID': 102}][{'name': 'bran','uID': 102},'uID': 103}]
正如我们期望中的一样
4.对列表中的多个字典根据某一字段进行分组
注意注意,在进行分组前要首先对数据进行排序处理,排序字段根据实际要求来选择
即将处理的数据:
rows = [ {'name': "bran","uID": 101,"class": 13},"class": 11},"uID": 103,"class": 10}]
期望处理结果:
{101: [{'name': 'xisi','class': 11,{'name': 'bran','class': 13,'uID': 101}],103: [{'name': 'land','class': 10,'uID': 103}]}
我们按照uID进行分组,这里只是演示,uID一般也不会重复。
这个比较复杂一点,我们一部一步来分解
some = [('a',3]),('b',[4,6])]print(dict(some))
结果:
{'b': [4,3]}
这里我们的目的是将元组转换成字典,这个很简单,应该都能看懂。接着我们来下一步对待处理数据进行排序:
data_one = sorted(rows,key=itemgetter("class"))print(data_one)data_two = sorted(rows,key=lambda x: (x["uID"],x["class"]))print(data_two)
这里我们提供两种排序方式原理相同,只是样式稍有区别,第一种data_one是直接使用itemgetter,按照我们前面使用过得,直接按照某一字段进行排序,可是有时候我们会有另一种要求:
先按照某一字段排序,当第一字段重复时,再按照另一字段排序。
这时我们就用第二种方法,进行多字段值排序。
排序结果如下:
[{'name': 'land','uID': 101}][{'name': 'xisi','uID': 103}]
结果大家慢慢看一下,还是略有差别。
接下来就进行最后一步了,将我们刚才讲的两种方式结合起来使用:
data = dict([(g,List(k)) for g,k in groupby(data_two,key=lambda x: x["uID"])])print(data)
我们对排序好的数据进行分组,然后生成元组列表,最后将其转换成字典,这里大功告成,我们成功将数据进行分组。
python数据统计的一些小技巧就分享到这,有需要的可以参考学习。
总结以上是内存溢出为你收集整理的分享python数据统计的一些小技巧全部内容,希望文章能够帮你解决分享python数据统计的一些小技巧所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)