python机器学习理论与实战(六)支持向量机

python机器学习理论与实战(六)支持向量机,第1张

概述上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量alpha的求解问题,求出了alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性

上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量Alpha的求解问题,求出了Alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性可分的,这样求出的Alpha在[0,infinite]。但是如果数据不是线性可分的呢?此时我们就要允许部分的样本可以越过分类器,这样优化的目标函数就可以不变,只要引入松弛变量

即可,它表示错分类样本点的代价,分类正确时它等于0,当分类错误时

,其中Tn表示样本的真实标签-1或者1,回顾上节中,我们把支持向量到分类器的距离固定为1,因此两类的支持向量间的距离肯定大于1的,当分类错误时

肯定也大于1,如(图五)所示(这里公式和图标序号都接上一节)。

(图五)

       这样有了错分类的代价,我们把上节(公式四)的目标函数上添加上这一项错分类代价,得到如(公式八)的形式:

(公式八)

重复上节的拉格朗日乘子法步骤,得到(公式九):


(公式九)

         多了一个Un乘子,当然我们的工作就是继续求解此目标函数,继续重复上节的步骤,求导得到(公式十):

 

(公式十)

         又因为Alpha大于0,而且Un大于0,所以0<Alpha<C,为了解释的清晰一些,我们把(公式九)的KKT条件也发出来(上节中的第三类优化问题),注意Un是大于等于0

 

      推导到现在,优化函数的形式基本没变,只是多了一项错分类的价值,但是多了一个条件,0<Alpha<C,C是一个常数,它的作用就是在允许有错误分类的情况下,控制最大化间距,它太大了会导致过拟合,太小了会导致欠拟合。接下来的步骤貌似大家都应该知道了,多了一个C常量的限制条件,然后继续用SMO算法优化求解二次规划,但是我想继续把核函数也一次说了,如果样本线性不可分,引入核函数后,把样本映射到高维空间就可以线性可分,如(图六)所示的线性不可分的样本:


(图六)

         在(图六)中,现有的样本是很明显线性不可分,但是加入我们利用现有的样本X之间作些不同的运算,如(图六)右边所示的样子,而让f作为新的样本(或者说新的特征)是不是更好些?现在把X已经投射到高维度上去了,但是f我们不知道,此时核函数就该上场了,以高斯核函数为例,在(图七)中选几个样本点作为基准点,来利用核函数计算f,如(图七)所示:


(图七)

       这样就有了f,而核函数此时相当于对样本的X和基准点一个度量,做权重衰减,形成依赖于x的新的特征f,把f放在上面说的SVM中继续求解Alpha,然后得出权重就行了,原理很简单吧,为了显得有点学术味道,把核函数也做个样子加入目标函数中去吧,如(公式十一)所示:

 

(公式十一) 

        其中K(Xn,Xm)是核函数,和上面目标函数比没有多大的变化,用SMO优化求解就行了,代码如下:

def smoPK(dataMatIn,classLabels,C,toler,maxIter): #full Platt SMO  oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),toler)  iter = 0  entireset = True; AlphaPairsChanged = 0  while (iter < maxIter) and ((AlphaPairsChanged > 0) or (entireset)):   AlphaPairsChanged = 0   if entireset: #go over all    for i in range(oS.m):       AlphaPairsChanged += innerL(i,oS)     print "fullSet,iter: %d i:%d,pairs changed %d" % (iter,i,AlphaPairsChanged)    iter += 1   else:#go over non-bound (railed) Alphas    nonBoundis = nonzero((oS.Alphas.A > 0) * (oS.Alphas.A < C))[0]    for i in nonBoundis:     AlphaPairsChanged += innerL(i,oS)     print "non-bound,AlphaPairsChanged)    iter += 1   if entireset: entireset = False #toggle entire set loop   elif (AlphaPairsChanged == 0): entireset = True   print "iteration number: %d" % iter  return oS.b,oS.Alphas 

下面演示一个小例子,手写识别。

      (1)收集数据:提供文本文件

      (2)准备数据:基于二值图像构造向量

      (3)分析数据:对图像向量进行目测

      (4)训练算法:采用两种不同的核函数,并对径向基函数采用不同的设置来运行SMO算法。

       (5)测试算法:编写一个函数来测试不同的核函数,并计算错误率

       (6)使用算法:一个图像识别的完整应用还需要一些图像处理的只是,此demo略。

完整代码如下:

from numpy import * from time import sleep  def loadDataSet(filename):  dataMat = []; labelMat = []  fr = open(filename)  for line in fr.readlines():   lineArr = line.strip().split('\t')   dataMat.append([float(lineArr[0]),float(lineArr[1])])   labelMat.append(float(lineArr[2]))  return dataMat,labelMat  def selectJrand(i,m):  j=i #we want to select any J not equal to i  while (j==i):   j = int(random.uniform(0,m))  return j  def clipAlpha(aj,H,L):  if aj > H:   aj = H  if L > aj:   aj = L  return aj  def smoSimple(dataMatIn,maxIter):  dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()  b = 0; m,n = shape(dataMatrix)  Alphas = mat(zeros((m,1)))  iter = 0  while (iter < maxIter):   AlphaPairsChanged = 0   for i in range(m):    fXi = float(multiply(Alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b    Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions    if ((labelMat[i]*Ei < -toler) and (Alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (Alphas[i] > 0)):     j = selectJrand(i,m)     fXj = float(multiply(Alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b     Ej = fXj - float(labelMat[j])     AlphaIold = Alphas[i].copy(); AlphaJold = Alphas[j].copy();     if (labelMat[i] != labelMat[j]):      L = max(0,Alphas[j] - Alphas[i])      H = min(C,C + Alphas[j] - Alphas[i])     else:      L = max(0,Alphas[j] + Alphas[i] - C)      H = min(C,Alphas[j] + Alphas[i])     if L==H: print "L==H"; continue     eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:].T     if eta >= 0: print "eta>=0"; continue     Alphas[j] -= labelMat[j]*(Ei - Ej)/eta     Alphas[j] = clipAlpha(Alphas[j],L)     if (abs(Alphas[j] - AlphaJold) < 0.00001): print "j not moving enough"; continue     Alphas[i] += labelMat[j]*labelMat[i]*(AlphaJold - Alphas[j])#update i by the same amount as j                   #the update is in the oppostIE direction     b1 = b - Ei- labelMat[i]*(Alphas[i]-AlphaIold)*dataMatrix[i,:].T - labelMat[j]*(Alphas[j]-AlphaJold)*dataMatrix[i,:].T     b2 = b - Ej- labelMat[i]*(Alphas[i]-AlphaIold)*dataMatrix[i,:].T - labelMat[j]*(Alphas[j]-AlphaJold)*dataMatrix[j,:].T     if (0 < Alphas[i]) and (C > Alphas[i]): b = b1     elif (0 < Alphas[j]) and (C > Alphas[j]): b = b2     else: b = (b1 + b2)/2.0     AlphaPairsChanged += 1     print "iter: %d i:%d,AlphaPairsChanged)   if (AlphaPairsChanged == 0): iter += 1   else: iter = 0   print "iteration number: %d" % iter  return b,Alphas  def kernelTrans(X,A,kTup): #calc the kernel or transform data to a higher dimensional space  m,n = shape(X)  K = mat(zeros((m,1)))  if kTup[0]=='lin': K = X * A.T #linear kernel  elif kTup[0]=='rbf':   for j in range(m):    delTarow = X[j,:] - A    K[j] = delTarow*delTarow.T   K = exp(K/(-1*kTup[1]**2)) #divIDe in NumPy is element-wise not matrix like Matlab  else: raise nameError('Houston We Have a Problem -- \  That Kernel is not recognized')  return K  class optStruct:  def __init__(self,dataMatIn,kTup): # Initialize the structure with the parameters   self.X = dataMatIn   self.labelMat = classLabels   self.C = C   self.tol = toler   self.m = shape(dataMatIn)[0]   self.Alphas = mat(zeros((self.m,1)))   self.b = 0   self.eCache = mat(zeros((self.m,2))) #first column is valID flag   self.K = mat(zeros((self.m,self.m)))   for i in range(self.m):    self.K[:,i] = kernelTrans(self.X,self.X[i,:],kTup)    def calcEk(oS,k):  fXk = float(multiply(oS.Alphas,oS.labelMat).T*oS.K[:,k] + oS.b)  Ek = fXk - float(oS.labelMat[k])  return Ek    def selectJ(i,oS,Ei):   #this is the second choice -heurstic,and calcs Ej  maxK = -1; maxDeltaE = 0; Ej = 0  oS.eCache[i] = [1,Ei] #set valID #choose the Alpha that gives the maximum delta E  valIDEcacheList = nonzero(oS.eCache[:,0].A)[0]  if (len(valIDEcacheList)) > 1:   for k in valIDEcacheList: #loop through valID Ecache values and find the one that maximizes delta E    if k == i: continue #don't calc for i,waste of time    Ek = calcEk(oS,k)    deltaE = abs(Ei - Ek)    if (deltaE > maxDeltaE):     maxK = k; maxDeltaE = deltaE; Ej = Ek   return maxK,Ej  else: #in this case (first time around) we don't have any valID eCache values   j = selectJrand(i,oS.m)   Ej = calcEk(oS,j)  return j,Ej  def updateEk(oS,k):#after any Alpha has changed update the new value in the cache  Ek = calcEk(oS,k)  oS.eCache[k] = [1,Ek]    def innerL(i,oS):  Ei = calcEk(oS,i)  if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.Alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.Alphas[i] > 0)):   j,Ej = selectJ(i,Ei) #this has been changed from selectJrand   AlphaIold = oS.Alphas[i].copy(); AlphaJold = oS.Alphas[j].copy();   if (oS.labelMat[i] != oS.labelMat[j]):    L = max(0,oS.Alphas[j] - oS.Alphas[i])    H = min(oS.C,oS.C + oS.Alphas[j] - oS.Alphas[i])   else:    L = max(0,oS.Alphas[j] + oS.Alphas[i] - oS.C)    H = min(oS.C,oS.Alphas[j] + oS.Alphas[i])   if L==H: print "L==H"; return 0   eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel   if eta >= 0: print "eta>=0"; return 0   oS.Alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta   oS.Alphas[j] = clipAlpha(oS.Alphas[j],L)   updateEk(oS,j) #added this for the Ecache   if (abs(oS.Alphas[j] - AlphaJold) < 0.00001): print "j not moving enough"; return 0   oS.Alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(AlphaJold - oS.Alphas[j])#update i by the same amount as j   updateEk(oS,i) #added this for the Ecache     #the update is in the oppostIE direction   b1 = oS.b - Ei- oS.labelMat[i]*(oS.Alphas[i]-AlphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.Alphas[j]-AlphaJold)*oS.K[i,j]   b2 = oS.b - Ej- oS.labelMat[i]*(oS.Alphas[i]-AlphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.Alphas[j]-AlphaJold)*oS.K[j,j]   if (0 < oS.Alphas[i]) and (oS.C > oS.Alphas[i]): oS.b = b1   elif (0 < oS.Alphas[j]) and (oS.C > oS.Alphas[j]): oS.b = b2   else: oS.b = (b1 + b2)/2.0   return 1  else: return 0  def smoP(dataMatIn,maxIter,kTup=('lin',0)): #full Platt SMO  oS = optStruct(mat(dataMatIn),kTup)  iter = 0  entireset = True; AlphaPairsChanged = 0  while (iter < maxIter) and ((AlphaPairsChanged > 0) or (entireset)):   AlphaPairsChanged = 0   if entireset: #go over all    for i in range(oS.m):       AlphaPairsChanged += innerL(i,oS.Alphas  def calcWs(Alphas,dataArr,classLabels):  X = mat(dataArr); labelMat = mat(classLabels).transpose()  m,n = shape(X)  w = zeros((n,1))  for i in range(m):   w += multiply(Alphas[i]*labelMat[i],X[i,:].T)  return w  def testRbf(k1=1.3):  dataArr,labelArr = loadDataSet('testSetRBF.txt')  b,Alphas = smoP(dataArr,labelArr,200,0.0001,10000,('rbf',k1)) #C=200 important  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  svInd=nonzero(Alphas.A>0)[0]  sVs=datMat[svInd] #get matrix of only support vectors  labelSV = labelMat[svInd];  print "there are %d Support Vectors" % shape(sVs)[0]  m,n = shape(datMat)  errorCount = 0  for i in range(m):   kernelEval = kernelTrans(sVs,datMat[i,k1))   predict=kernelEval.T * multiply(labelSV,Alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1  print "the training error rate is: %f" % (float(errorCount)/m)  dataArr,labelArr = loadDataSet('testSetRBF2.txt')  errorCount = 0  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  m,n = shape(datMat)  for i in range(m):   kernelEval = kernelTrans(sVs,Alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1   print "the test error rate is: %f" % (float(errorCount)/m)    def img2vector(filename):  returnVect = zeros((1,1024))  fr = open(filename)  for i in range(32):   linestr = fr.readline()   for j in range(32):    returnVect[0,32*i+j] = int(linestr[j])  return returnVect  def loadImages(dirname):  from os import Listdir  hwLabels = []  trainingfileList = Listdir(dirname)   #load the training set  m = len(trainingfileList)  trainingMat = zeros((m,1024))  for i in range(m):   filenameStr = trainingfileList[i]   fileStr = filenameStr.split('.')[0]  #take off .txt   classNumStr = int(fileStr.split('_')[0])   if classNumStr == 9: hwLabels.append(-1)   else: hwLabels.append(1)   trainingMat[i,:] = img2vector('%s/%s' % (dirname,filenameStr))  return trainingMat,hwLabels   def testDigits(kTup=('rbf',10)):  dataArr,labelArr = loadImages('trainingDigits')  b,kTup)  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  svInd=nonzero(Alphas.A>0)[0]  sVs=datMat[svInd]  labelSV = labelMat[svInd];  print "there are %d Support Vectors" % shape(sVs)[0]  m,kTup)   predict=kernelEval.T * multiply(labelSV,labelArr = loadImages('testDigits')  errorCount = 0  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  m,Alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1   print "the test error rate is: %f" % (float(errorCount)/m)   '''''#######******************************** Non-Kernel VErsions below '''#######********************************  class optStructK:  def __init__(self,toler): # Initialize the structure with the parameters   self.X = dataMatIn   self.labelMat = classLabels   self.C = C   self.tol = toler   self.m = shape(dataMatIn)[0]   self.Alphas = mat(zeros((self.m,2))) #first column is valID flag    def calcEkK(oS,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b  Ek = fXk - float(oS.labelMat[k])  return Ek    def selectJK(i,Ej  def updateEkK(oS,Ek]    def innerLK(i,oS.Alphas[j] + oS.Alphas[i])   if L==H: print "L==H"; return 0   eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:].T   if eta >= 0: print "eta>=0"; return 0   oS.Alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta   oS.Alphas[j] = clipAlpha(oS.Alphas[j],i) #added this for the Ecache     #the update is in the oppostIE direction   b1 = oS.b - Ei- oS.labelMat[i]*(oS.Alphas[i]-AlphaIold)*oS.X[i,:].T - oS.labelMat[j]*(oS.Alphas[j]-AlphaJold)*oS.X[i,:].T   b2 = oS.b - Ej- oS.labelMat[i]*(oS.Alphas[i]-AlphaIold)*oS.X[i,:].T - oS.labelMat[j]*(oS.Alphas[j]-AlphaJold)*oS.X[j,:].T   if (0 < oS.Alphas[i]) and (oS.C > oS.Alphas[i]): oS.b = b1   elif (0 < oS.Alphas[j]) and (oS.C > oS.Alphas[j]): oS.b = b2   else: oS.b = (b1 + b2)/2.0   return 1  else: return 0  def smoPK(dataMatIn,oS.Alphas 

运行结果如(图八)所示:


(图八)

上面代码有兴趣的可以读读,用的话,建议使用libsvm。

参考文献:

    [1]machine learning in action. PeterHarrington

    [2] pattern recognition and machinelearning. Christopher M. Bishop

    [3]machine learning.Andrew Ng

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。

总结

以上是内存溢出为你收集整理的python机器学习理论与实战(六)支持向量机全部内容,希望文章能够帮你解决python机器学习理论与实战(六)支持向量机所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1204733.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存