python – 如何使用TensorFlow中的官方批量标准化层?

python – 如何使用TensorFlow中的官方批量标准化层?,第1张

概述我试图使用批量标准化来训练我的神经网络使用TensorFlow,但我不清楚如何使用 the official layer implementation of Batch Normalization(注意这与 API的不同). 在他们的github issues上进行了一些痛苦的挖掘后,似乎需要一个tf.cond来正确使用它并且还有一个’resue = True’标志,以便BN移位和缩放变量被正确地 我试图使用批量标准化来训练我的神经网络使用TensorFlow,但我不清楚如何使用 the official layer implementation of Batch Normalization(注意这与 API的不同).

在他们的github issues上进行了一些痛苦的挖掘后,似乎需要一个tf.cond来正确使用它并且还有一个’resue = True’标志,以便BN移位和缩放变量被正确地重复使用.在弄清楚之后,我提供了一个小小的描述,说明我认为是使用它的正确方法here.

现在我已经编写了一个简短的脚本来测试它(只有一个层和一个ReLu,很难让它比这个小).但是,我不是百分百确定如何测试它.现在我的代码运行时没有错误消息,但意外返回NaN.这降低了我对我在其他帖子中提供的代码可能正确的信心.或许我所拥有的网络很奇怪.无论哪种方式,有人知道什么是错的?这是代码:

import tensorflow as tf# download and install the MNIST data automaticallyfrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.contrib.layers.python.layers import batch_norm as batch_normdef batch_norm_layer(x,train_phase,scope_bn):    bn_train = batch_norm(x,decay=0.999,center=True,scale=True,is_training=True,reuse=None,# is this right?    trainable=True,scope=scope_bn)    bn_inference = batch_norm(x,is_training=False,reuse=True,scope=scope_bn)    z = tf.cond(train_phase,lambda: bn_train,lambda: bn_inference)    return zdef get_NN_layer(x,input_dim,output_dim,scope,train_phase):    with tf.name_scope(scope+'vars'):        W = tf.Variable(tf.truncated_normal(shape=[input_dim,output_dim],mean=0.0,stddev=0.1))        b = tf.Variable(tf.constant(0.1,shape=[output_dim]))    with tf.name_scope(scope+'Z'):        z = tf.matmul(x,W) + b    with tf.name_scope(scope+'BN'):        if train_phase is not None:            z = batch_norm_layer(z,scope+'BN_unit')    with tf.name_scope(scope+'A'):        a = tf.nn.relu(z) # (M x D1) = (M x D) * (D x D1)    return amnist = input_data.read_data_sets("MNIST_data/",one_hot=True)# placeholder for datax = tf.placeholder(tf.float32,[None,784])# placeholder that turns BN during training or off during inferencetrain_phase = tf.placeholder(tf.bool,name='phase_train')# variables for parametershIDen_units = 25layer1 = get_NN_layer(x,input_dim=784,output_dim=hIDen_units,scope='layer1',train_phase=train_phase)# create modelW_final = tf.Variable(tf.truncated_normal(shape=[hIDen_units,10],stddev=0.1))b_final = tf.Variable(tf.constant(0.1,shape=[10]))y = tf.nn.softmax(tf.matmul(layer1,W_final) + b_final)### trainingy_ = tf.placeholder(tf.float32,10])cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]) )train_step = tf.train.GradIEntDescentoptimizer(0.5).minimize(cross_entropy)with tf.Session() as sess:    sess.run(tf.initialize_all_variables())    steps = 3000    for iter_step in xrange(steps):        #Feed_dict_batch = get_batch_Feed(X_train,Y_train,M,phase_train)        batch_xs,batch_ys = mnist.train.next_batch(100)        # Collect model statistics        if iter_step%1000 == 0:            batch_xstrain,batch_xstrain = batch_xs,batch_ys #simualtes train data            batch_xcv,batch_ycv = mnist.test.next_batch(5000) #simualtes CV data            batch_xtest,batch_ytest = mnist.test.next_batch(5000) #simualtes test data            # do inference            train_error = sess.run(fetches=cross_entropy,Feed_dict={x: batch_xs,y_:batch_ys,train_phase: False})            cv_error = sess.run(fetches=cross_entropy,Feed_dict={x: batch_xcv,y_:batch_ycv,train_phase: False})            test_error = sess.run(fetches=cross_entropy,Feed_dict={x: batch_xtest,y_:batch_ytest,train_phase: False})            def do_stuff_with_errors(*args):                print args            do_stuff_with_errors(train_error,cv_error,test_error)        # Run Train Step        sess.run(fetches=train_step,train_phase: True})    # List of booleans indicating correct predictions    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))    # accuracy    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))    print(sess.run(accuracy,Feed_dict={x: mnist.test.images,y_: mnist.test.labels,train_phase: False}))

当我运行它时,我得到:

Extracting MNIST_data/train-images-IDx3-ubyte.gzExtracting MNIST_data/train-labels-IDx1-ubyte.gzExtracting MNIST_data/t10k-images-IDx3-ubyte.gzExtracting MNIST_data/t10k-labels-IDx1-ubyte.gz(2.3474066,2.3498712,2.3461707)(0.49414295,0.88536006,0.91152304)(0.51632041,0.393666,nan)0.9296

它曾经是最后一个是南,现在只有少数几个.一切都好还是我是偏执狂?

解决方法 我不确定这是否能解决您的问题,Batchnorm的文档不是很容易使用/提供信息,所以这里简单回顾一下如何使用简单的Batchnorm:

首先,您定义Batchnorm图层.如果你想在仿射/完全连接的层之后使用它,你可以这样做(只是一个例子,订单可以根据需要不同):

...inputs = tf.matmul(inputs,W) + binputs = tf.layers.batch_normalization(inputs,training=is_training)inputs = tf.nn.relu(inputs)...

函数tf.layers.batch_normalization调用变量初始值设定项.这些是内部变量,需要调用一个特殊的范围,它位于tf.GraphKeys.UPDATE_OPS中.因此,您必须按如下方式调用优化程序函数(在定义了所有图层之后!):

...extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)with tf.control_dependencIEs(extra_update_ops):    trainer = tf.train.AdamOptimizer()     updateModel = trainer.minimize(loss,global_step=global_step)...

你可以阅读更多关于它here.我知道回答你的问题有点晚了,但它可能会帮助其他人在tensorflow中遇到Batchnorm问题! 总结

以上是内存溢出为你收集整理的python – 如何使用TensorFlow中的官方批量标准化层?全部内容,希望文章能够帮你解决python – 如何使用TensorFlow中的官方批量标准化层?所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1206512.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存