matplotlib画图

matplotlib画图,第1张

概述参考文档:Matplotlibtutorial如何在论文中画出漂亮的插图?matplotlib画饼状图1.图中加标注

参考文档:


href="http://www.cnblogs.com/vamei/archive/2012/09/17/2689798.HTML" rel="nofollow">matplotlib画饼状图

1. 图中加标注



2. 柱状图

<p >

        



3. colormap图

<p >

'+fn)            #fn='/d3/MWRT/R20130805/F06925_EMS60.txt'            data=wlab.dlmread(fn)            EMS=EMS+List(data[:,1])#地表发射率            LST=LST+List(data[:,2])#温度            TBH=TBH+List(data[:,8])#水平亮温            TBV=TBV+List(data[:,9])#垂直亮温    #-----------------------------------------------------------    #生成格点数据,利用grIDdata插值    grID_x,grID_y = np.mgrID[275:315:1,0.60:0.95:0.01]    grID_z = grIDdata((LST,EMS),TBH,(grID_x,grID_y),method='cubic')    #将横纵坐标都映射到(0,1)的范围内    extent=(0,1)     #指定colormap    cmap = matplotlib.cm.jet    #设定每个图的colormap和colorbar所表示范围是一样的,即归一化    norm = matplotlib.colors.normalize(vmin=160,vmax=300)    #显示图形,此处没有使用contourf #>>>ctf=plt.contourf(grID_x,grID_y,grID_z)    gci=plt.imshow(grID_z.T,extent=extent,origin='lower',cmap=cmap,norm=norm)    #配置一下坐标刻度等    ax=plt.gca()    ax.set_xticks(np.linspace(0,9))    ax.set_xticklabels( ('275','280','285','290','295','300','305','310','315'))    ax.set_yticks(np.linspace(0,8))    ax.set_yticklabels( ('0.60','0.65','0.70','0.75','0.80','0.85','0.90','0.95'))    #显示colorbar    cbar = plt.colorbar(gci)    cbar.set_label('$T_B(K)$',Fontdict=Font)    cbar.set_ticks(np.linspace(160,300,8))    cbar.set_ticklabels( ('160','180','200','220','240','260','300'))    #设置label    ax.set_ylabel('Land Surface Emissivity',Fontdict=Font)    ax.set_xlabel('Land Surface Temperature(K)',Fontdict=Font) #陆地地表温度LST    #设置Title    TitleStr='$T_B$ for Freq = '+str(float(fp[1:-1])*0.01)+'GHz'    plt.Title(TitleStr)    figname=fp+'.png'    plt.savefig(figname)    plt.clf()#清除图形plt.show()

print('ALL -> Finished OK')


4. 饼状图


import matplotlib.pyplot as plt

quants: GDPlabels: country name

labels = []
quants = []

Read data

for line in file('../data/major_country_gdp'):
info = line.split()
labels.append(info[0])
quants.append(float(info[1]))

make a square figure

plt.figure(1,figsize=(6,6))

For China,make the pIEce explode a bit

def explode(label,target='China'):
if label == target: return 0.1
else: return 0
expl = map(explode,labels)

colors used. Recycle if not enough.

colors = ["pink","coral","yellow","orange"]

PIE Plota@R_502_6622@ct: format of "percent" string;

plt.pIE(quants,explode=expl,colors=colors,labels=labels,a@R_502_6622@ct='%1.1f%%',pctdistance=0.8,shadow=True)
plt.Title('top 10 GDP CountrIEs',bBox={'facecolor':'0.8','pad':5})

plt.show()




总结

以上是内存溢出为你收集整理的matplotlib画图全部内容,希望文章能够帮你解决matplotlib画图所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1209144.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)