请问python除以分子分母同时除以结果是多少?

请问python除以分子分母同时除以结果是多少?,第1张

结果为75。

在Python" // "表示整数除法。

Python的表达式写法与C/C++类似。只是在某些写法有所差别。主要的算术运算符与C/C++类似。+, -, , /, //, , ~, %分别表示加法或者取正、减法或者取负、乘法、除法、整除、乘方、取补、取余。>>, <<表示右移和左移。&, |, ^表示二进制的AND, OR, XOR运算。

Python

是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

python中的注释有多种,有单行注释,多行注释,批量注释,中文注释也是常用的。

一、python单行注释符号(#):井号(#)常被用作单行注释符号,在代码中使用#时,它右边的任何数据都会被忽略,当做是注释。print 1 #输出1,#号右边的内容在执行的时候是不会被输出的。

二、批量、多行注释符号:在python中也会有注释有很多行的时候,这种情况下就需要批量多行注释符了。多行注释是用三引号''' '''包含的。

python正则表达式的注释方法:学过正则都知道,那简直是天书,为了提高正则的可读性,正则表达式中提供了X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

Python:

是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。

相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

这里整理了一份基于Python语言的测试开发完整学习路线,对软件测试感兴趣的朋友可根据这份大纲来学习:

第一阶段:专业基础课程

阶段目标:

1 熟练掌握IT核心技术:编程,数据库, *** 作系统,版本控制

2 能够熟练运用所学技术搭建各类服务器环境

3 深入理解软件研发过程各种疑难杂症及处理手段

4 掌握Python编程技术并熟练运用Python进行程序设计

知识点:

1、Web页面元素,布局,CSS样式,盒模型,JavaScript程序设计,函数,基础算法,正则表达式。

2、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,建模工具深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为软件测试和测试开发打下基础。

3、Linux安装配置,文件目录 *** 作,VI命令,管理,用户与权限,环境部署,Shell编程Linux作为一个主流的服务器 *** 作系统,是每一个测试开发工程师必须掌握的重点技术,并且能够熟练运用。

4、Python编程基础,语法规则,函数,数据类型,PDBC,培养扎实的Python编程基本功,同时对Python核心对象编程有熟练的运用。

5、Python面向对象,异常处理,文件IO,多线程,网络编程,PyQT界面开发,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。

第二阶段:专业核心课程

阶段目标:

1 熟练应用所学知识完成一个标准的软件测试项目

2 熟练运用Python完成GUI测试,接口测试和性能测试开发

3 对测试开发技术体系和实现原理有深入的理解

4 灵活运用测试开发技术解决项目中的各种问题

知识点:

1、软件工程,软件质量,系统测试流程,方法,专业术语,测试用例设计,禅道管理工具,测试报告,缺陷管理理解软件工程的各类实际问题,理解系统测试的理论、方法与过程,熟练运用测试用例设计方法高效设计测试用例。

2、测试需求分析,测试方案设计,测试用例设计,测试项目实施,缺陷报告与测试报告,深入理解系统测试各个过程和关键环节,熟练完成系统测试项目。

3、SikuliX框架,框架,Selenium WebDriver框架,基础框架,Android应用,Monkey测试,Appium移动端测试框架,移动端测试框架综合运用各类应用 *** 作平台,完成各种自动化测试框架的学习和应用,深入理解GUI自动化测试技术及相应框架的测试开发。

4、Python单元测试框架,网络通信协议,HTTP与HTTPS协议,WebService与WebSocket协议,Python的接口测试库,PostMan与SoapUI接口测试工具通过对代码级接口测试和协议级接口测试的测试开发实战,灵活运用Python开发接口测试脚本,熟练运用各类接口测试工具。

5、性能测试原理,指标体系,场景设计,实施过程,JMeter工具应用,BeanShell脚本开发,PythonLocust性能测试框架深入理解性能测试技术体系和方法论,熟练运用JMeter性能测试工具和Locust性能测试框架实施对任意系统的性能测试。

第三阶段:综合实战项目

阶段目标:

1 将软件测试和测试开发技术灵活运用于项目中

2 具备较强的测试开发能力,独立完成测试开发项目

3 综合运用软件测试技术,满足企业中高级人才需求

4 对所学技术有深入的理解并具备独立解决问题的能力

知识点:

1、测试需求分析,同行评审,测试计划,测试方案,测试用例,配置管理,持续集成。通过对大型企业级应用系统的测试项目实战,强化理解系统测试项目的实施过程与技术细节。

2、接口测试设计与实施,回归测试,冒烟测试,安全性测试,框架应用,UI自动化实战将各类自动化测试技术结合项目实战演练,强化对自动化测试技术的运用,同时掌握更多的测试框架。

3、性能测试项目实战,LoadRunner性能测试工具,总结通过综合项目实战,将全套测试技术融入到项目中,强化学习效果和项目经验。

4、Python原生测试框架开发,包括Monkey,UI,图像识别,云测试平台,HTML测试报告,持续集成,KDT关键字驱动框架开发等原生技术实现通过大量的Python原生代码开发,深入理解自动化测试开发技术的底层实现原理,完全抛弃对工具的依赖,做到真正的测试开发技术。

5、基于测试框架的设计思路和实现手段,自主实现一套测试框架能够独立完成一套自动化测试框架,并能够直接用于实际项目中。

6、持续集成与Jenkins,安全性测试原理与工具,Python爬虫开发与Scrapy框架,提升软件测试其它类技术,增强知识面,提升竞争力,助力职业发展。

补充知识

1、 算法进阶,图像处理,视频处理,加密解密,压缩算法。

2、 UML统一建模语言、五种图、类图、类图详解、用例图、时序图。

3、Dubbo分布式开发框架,Oracle关系型数据库管理系统,MongoDB非关系型数据库管理系统。

4、 大数据开发框架Hadoop/MapRece/Spark。

5、 Android与iOS的原生应用开发与WebApp开发。

6、OpenCV图像处理框架、TensorFlow深度学习框架,Lucene全文搜索引擎与中文分词框架Ik-Analyzer,视频处理算法与框架等。

我们可以使用Python的print函数来输出内容。该函数接受一个或多个参数,并将它们输出到控制台或其他设备。例如,我们可以使用以下代码输出字符串"Hello, world!":

```

print("Hello, world!")

```

此外,我们还可以通过将变量作为参数传递给print函数来输出变量的值。例如,如果我们将一个整数变量x设置为5,我们可以使用以下代码输出它的值:

```

x = 5

print(x)

```

输出结果为:

```

5

```

在Python中,print函数是一种非常常见的工具,用于在开发过程中输出调试信息或结果。此外,它还可以用于输出格式化的文本和数据。例如,我们可以使用以下代码输出一个包含变量值的字符串:

```

x = 5

print("The value of x is", x)

```

输出结果为:

```

The value of x is 5

```

此外,我们还可以使用print函数输出多个变量的值,例如:

```

x = 5

y = 10

print("The values of x and y are", x, "and", y)

```

输出结果为:

```

The values of x and y are 5 and 10

```

总之,使用Python的print函数可以轻松地输出各种内容,包括字符串、变量值和格式化的数据。

这里整理了一份系统全面的Python开发学习路线,主要涉及以下知识,感兴趣的小伙伴欢迎一起来学习~

第一阶段:专业核心基础

阶段目标:

1熟练掌握Python的开发环境与编程核心知识

2熟练运用Python面向对象知识进行程序开发

3对Python的核心库和组件有深入理解

4熟练应用SQL语句进行数据库常用 *** 作

5熟练运用Linux *** 作系统命令及环境配置

6熟练使用MySQL,掌握数据库高级 *** 作

7能综合运用所学知识完成项目

知识点:

Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux *** 作系统。

1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。

2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。

3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。

4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。

5、Linux安装配置,文件目录 *** 作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器 *** 作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。

第二阶段:PythonWEB开发

阶段目标:

1熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架

2深入理解Web系统中的前后端交互过程与通信协议

3熟练运用Web前端和Django和Flask等主流框架完成Web系统开发

4深入理解网络协议,分布式,PDBC,AJAX,JSON等知识

5能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理

6使用Web开发框架实现贯穿项目

知识点:

Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。

1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。

2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。

3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。

4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。

第三阶段:爬虫与数据分析

阶段目标:

1熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析

2熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取

3熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理

4熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取

5熟练掌握数据分析相关概念及工作流程

6熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用

7熟练掌握数据清洗、整理、格式转换、数据分析报告编写

8能够综合利用爬虫爬取豆瓣网**评论数据并完成数据分析全流程项目实战

知识点:

网络爬虫开发、数据分析之Numpy、数据分析之Pandas。

1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。

2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见 *** 作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等 *** 作。

3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和 *** 作方法。

4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。

第四阶段:机器学习与人工智能

阶段目标:

1理解机器学习相关的基本概念及系统处理流程

2能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题

3熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等

4掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等

5掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目

知识点:

1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。

2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflowplayround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。

python 中文就是蟒蛇的意思。

在计算机中,它是一种编程语言。

Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C++重写。

1发展历程编辑

自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程。Python[1] 已经成为最受欢迎的程序设计语言之一。2011年1月,它被TIOBE编程语言排行榜评为2010年度语言。自从2004年以后,python的使用率是呈线性增长[2] 。

由于Python语言的简洁、易读以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学

已经采用Python教授程序设计课程。例如卡耐基梅隆大学的编程基础和麻省理工学院的计算机科学及编程导论就使用Python语言讲授。众多开源的科学

计算软件包都提供了Python的调用接口,

例如著名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的

科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语

言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。

说起科学计算,首先会被提到的可能是MATLAB。然而除了MATLAB的一些专业性很强的工具箱还无法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:

● 首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。

● 其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、易维护的代码。

● 最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。

2产生

Python的创始人为Guido van Rossum。1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC 语言的一种继承。之所以选中Python(大蟒蛇的意思)作为程序的名字,是因为他是一个叫Monty Python的喜剧团体的爱好者。

ABC是由Guido参加设计的一种教学语言。就Guido本人看来,ABC

这种语言非常优美和强大,是专门为非专业程序员设计的。但是ABC语言并没有成功,究其原因,Guido 认为是非开放造成的。Guido

决心在Python 中避免这一错误。同时,他还想实现在ABC 中闪现过但未曾实现的东西。

就这样,Python在Guido手中诞生了。可以说,Python是从ABC发展起来,主要受到了Modula-3(另一种相当优美且强大的语言,为小型团体所设计的)的影响。并且结合了Unix shell和C的习惯。

3风格

Python在设计上坚持了清晰划一的风格,这使得Python成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。

设计者开发时总的指导思想是,对于一个特定的问题,只要有一种最好的方法来解决就好了。这在由Tim

Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and

preferably only one --obvious way to do it 这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。

Python的作者有意的设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。

一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定的(而C语言

是用一对花括号{}来明确的定出模块的边界的,与字符的位置毫无关系)。这一点曾经引起过争议。因为自从C这类的语言诞生后,语言的语法含义与字符的排列

方式分离开来,曾经被认为是一种程序语言的进步。不过不可否认的是,通过强制程序员们缩进(包括if,for和函数定义等所有需要使用模块的地方),Python确实使得程序更加清晰和美观。

4设计定位

Python

的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。

Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝

花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大

规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到

Python内。所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师

倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

虽然Python可能被粗略地分类为“脚本语言”(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是“脚本语言”泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和

工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。因此,很

多人还把Python作为一种“胶水语言”(glue

language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google

Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。《Python技术手册》的作者马特利(Alex

Martelli)说:“这很难讲,不过,2004 年,Python 已在 Google 内部使用,Google 召募许多 Python

高手,但在这之前就已决定使用Python,他们的目的是 Python where we can, C++ where we

must,在 *** 控硬件的场合使用 C++,在快速开发时候使用 Python。”

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12156604.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存