F=AB+A'C+B'C=AB+(A'+B')C=AB+(AB)'C=AB+C
F=(A+B')(B+C')(C+D')(D+A')
=A(B+C')(C+D')(D+A')+B'(B+C')(C+D')(D+A')
=(AB+AC')(C+D')(D+A')+B'C'(C+D')(D+A')
=AB(C+D')(D+A')+B'C'(C+D')(D+A')
=ABC(D+A')+B'C'D'(D+A')
=ABCD+A'B'C'D
一级一级乘下来,总有AA'XX形式成为0项,所以越展开起简单
Y = A⊕B⊕C。
Y' = ( A⊕B⊕C)' ----- 这就是Y的反函数,依照定义可一步一步作下去!
布尔代数法:按一定逻辑规律进行运算的代数。与普通代数不同,布尔代数中的变量是二元值的逻辑变量。
真值表法:采用一种表格来表示逻辑函数的运算关系,其中输入部分列出输入逻辑变量的所有可能组合,输出部分给出相应的输出逻辑变量值。
扩展资料:
计算机语言表示法:AND。
在所有参数的逻辑值为真时返回TRUE(真);只要有一个参数的逻辑值为假,则返回FALSE(假)。
语法表示为:AND(Logical1,logical2,…)。参数Logical1,logical2,…为待检验的1~30个逻辑表达式,它们的结论或为TRUE(真)或为FALSE(假)。
参数必须是逻辑值或者包含逻辑值的数组或引用,如果数组或引用内含有文字或空白单元格,则忽略它的值。如果指定的单元格区域内包括非逻辑值,AND将返回错误值“#VALUE!”。
-逻辑函数
解答如下:
搞好数学的方法
1、数学跟其他学科一样,也是有很多概念性的东西,学好数学的基础就是明白定义到底说的是什么。
比如数学中的平方,立方,绝对值的含义。我们知道平方就是两个相同的数相乘,当然立方就是三个相同的数相乘,绝对值就是大于或者等于0的数值,明白了定义的真正含义,也就走出了第一步,为后面的学习打下了坚实的基础。
2、数学跟其他学科不同之处就是不需要死记硬背,因为数学不考试问答题,而是计算这是最大的不同。怎么实践呢,具体的说一下。
数学的许多题都是从定义出发的,前面我说过,定义明白了,也就好下手了。比如合并同类项,先想定义,就是同类的项,简单点就是都有的那个东西,明白了定义,然后下手做题,当然就事半功倍了。
3、前面我说过。数学不是背出来的,是用笔杆子算出来的。所以针对一个公式或者一个定义,只有把关于这个问题的题目多做上几道,自然的就运用和真正理解了其中的意义。
数学常用的解决技巧:
1、配方法。
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法。
因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)