在某区域内多元函数的最大值最小值怎么求

在某区域内多元函数的最大值最小值怎么求,第1张

最大值:

=MAX(单元格区域)

最小值:

=MIN(单元格区域)

假设区域是A列,则公式:

最大值:

=MAX(A:A)

最小值:

=MIN(A:A)

亲,这样提问有点模糊啊,这要看到你表格的实际数据情况才能提供解决方法的,请把数据截图发上来,截图时切记要把最左边那表示行的1、2、3、4。。。的数字及上方表示列的A、B、C、D。。。。截在图中,如果是不同的两个工作表的,还需要把工作表名截在图中,并附上详细的说明哦。

函数z=f(x,y)在点(x,y)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x,y),fy(x,y)=0,令

fxx(x,y)=A,fxy=(x,y)=B,fyy=(x,y)=C

则f(x,y)在(x,y)处是否取得极值的条件是

(1)AC-BB>0时有极值

(2)AC-BB

设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。

记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量。

扩展资料

多元函数的本质是一种关系,是两个集合间一种确定的对应关系。这两个集合的元素可以是数;也可以是点、线、面、体;还可以是向量、矩阵等等。

人们最常见的函数,以及目前我国中学数学教科书所说的“函数”,除有特别注明者外,实际上(全称)是一元单值实变函数。

极值是变分法的一个基本概念。泛函在容许函数的一定范围内取得的最大值或最小值,分别称为极大值或极小值,统称为极值。

“极大值” 和 “极小值”的统称。如果函数在某点的 值大于或等于在该点附近任何其他 点的函数值,则称函数在该点的值 为函数的“极大值”。

设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。

若对于每一个有序数组(x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。记为y=f(x1,x2,…,xn) ,(x1,x2,…,xn)∈D 。 变量x1,x2,…,xn称为自变量;y称为因变量。(xi,其中i是下标。下同)

当n=1时,为一元函数,记为y=f(x),x∈D;

当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D图象如图。

二元及以上的函数统称为多元函数。 设D是n维空间的一个点集,f为某一确定的对应法则。如果对于每个点P(x1,x2,…,xn)∈D,变量z按照对应法则f总有唯一确定的值和它对应,则称z是变量x1,x2,…,xn的n元函数。记为z=f(x1,x2,…,xn),(x1,x2,…,xn) ∈D,或z=f(P),P∈D。 若函数f的定义域D是实数集R的一个子集,即只依赖于一个自变量,就说f是一元函数。若函数f的定义域D是n个R的笛卡尔(R Descartes)积R×R×…×R=R^n的子集,即依赖于n个独立自变量,就说f是n元函数。

当n≥2时,n元函数泛称为多元函数。

二元函数的定义域通常是由平面上的一条或几条光滑曲线所围成的平面区域,围成区域的曲线称为区域的边界,包括边界在内的区域称为闭区域,否则称为开区域。

以二元函数为例说明之:设:二元函数 f(x,y)的稳定点为:(x0,y0);这是取极值的必要条件

即:∂f(x0,y0)/∂x = ∂f(x0,y0)/∂y = 0;

记:A=∂²f(x0,y0)/∂x²

B=∂²f(x0,y0)/∂x∂y

C=∂²f(x0,y0)/∂y²

∆=AC-B² //:判别式

如果:∆>0

(1) A<0,f(x0,y0) 为极大值;

(2) A>0,f(x0,y0) 为极小值;

如果:∆<0 不是极值;

如果:∆=0 需进一步判断。

举一例:f(x,y)=x²+y²,其稳定点为:(0,0)。A=2,B=0,C=2 ∆=4>0

f(0,0)=0 为极小值!也是最小值。对于n>2的多元函数,结论类似。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12163093.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存