有关sinx的麦克劳林公式的问题

有关sinx的麦克劳林公式的问题,第1张

泰勒定理开创有限差分的理论,因此任何单个可变功能可以开发成幂级数

著名定理 - 泰勒定理:其中v是增量的自变量,以及作为数据流的数量。他假定均匀随着时间的推移,是恒定的。上述公式表达的现代形式:该公式是由格雷戈里 - 牛顿插值公式发展而成,当x = 0时,他们被称为麦克劳林定理。拉格朗日强调了这个公式的重要性,以及被称为微分学的基本定理,但泰勒并没有考虑他们证明级数的收敛,从而使没有严谨的论证,这项工作,直到19世纪20年代由柯西完成

第一个重要极限公式是:lim((sinx)/x)=1(x->0)

第二个重要极限公式是:lim(1+(1/x))^x=e(x→∞)。        

       

       

用极限思想解决问题的一般步骤

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。  

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。  

人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。要相信,用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。

       

       两个重要极限公式作用

sinx/x的极限,在中国国内的教学环境中,经常被歪解成等价无穷小。而在国际的分教学中,依旧是中规中矩,没有像国内这么疯狂炒作等价无穷小代换。sinx经过麦克劳林级数展开后,x是最低价的无穷小,sinx跟x只有在比值时,当x趋向于0时,极限才是1。用我们一贯的,并不是十分妥当的说法,是“以直代曲”。  这一特性在计算、推导其他极限公式、导数公式、积分公式时,会反反复复地用到。sinx、x、tanx也给夹挤定理提供了最原始的实例,也给复变函数中sinx/x的定积分提供形象理解。          

       

       

关于e的重要性,更是登峰造极。表面上它起了两个作用:

A、一个上升、有阶级数,跟一个下降的有阶级数,具有一个共同极限;  

B、破灭了我们原来的一些固有概念:  大于1的数开无限次幂的结果会越来越小,直到1为止;小于1的正数开无限次幂的结果会越来越大,直到1为止。

 整体而言,e的重要极限,有这么几个意义:

 A、将代数函数、对数函数、三角函数,整合为一个整体理论,再结合复数理论,它们成为一个严密的互通互化互补的、相辅相成、交相印证的完整理论体系

B、使得整个微积分理论,包括微分方程理论,简洁明了。没有了e^x这一函数,就没有了lnx,也就没有一切理论,所有的公式将十分复杂。

^^sinx=x-1/3(x^3)+······+(-1)^n{1/(2x+1)!}(x^2n+1)+{Xn}

cosx=1-1/2!(X^2)+1/4!(X^4)-·······+(-1)^n{1/(2n)!}(x^2n)+{Xn}

^sinx=x-x^3/3!+o(x^3)

cosx=1-x^2/2!+o(x^3)

xcosx=x-x^3/2!+o(x^4)

sinx-xcosx=1/3x^3+o(x^3)

o(x^4)是比o(x^3)更高阶的无穷小量,两者的差还是o(x^3)

扩展资料:

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。

-泰勒公式

sinx=[e^(ix)-e^(-ix)]/(2i)。

高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) 。

cosx=[e^(ix)+e^(-ix)]/2 。

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]。

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。

六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ。

相关信息:

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例,拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。

7个常用麦克劳林公式是:

1、sinx=x-x^3/3!+x^5/5!-…+(-1)^nx^(2n+1)/(2n+1)!+0^(x^(2n+2))

2、cosx=1-x^2/2!+x^4/4!-x^6/6!+…+(-1)^nx^2n/(2n)!+0^(x^2n)

3、ln(1+x)=x-x^2/2+x^3/3-…+(-1)^nx^(n+1)/(n+1)+0(x^(n+1))

4、1/(1-x)=1+x+x^2+…+x^n+0(x^n)

5、(1+x)^m=1+mx+m(m-1)/2!x^2+…+m(m-1)…(m-n-+1)x^n/n!+0(x^n)

6、e^x=1+x+x^2/2!+…x^n/n!+e^θx·x^(n+1)/(n+1)!

7、1/(1+x)=1+x+x^2+x^3+…+x^n(x∈(-1,1))

麦克劳林简介

在麦克劳林公式中,误差|R𝗻(x)|是当x→0时比xⁿ高阶的无穷小。 

若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和。他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12181129.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存