什么是哈希算法?哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。
Hash的特点
易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。
易计算:对于任意给定的消息,计算其Hash值比较容易。
单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。
抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。
高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
作者/上善若水
1md5(string $str,bool $flag = false);
$flag = false 默认返回32位的16进至数据散列值
$flag = true 返回原始流数据
2sha1($string,$flag = false)
$flag = false 默认返回40位的16进至数据散列值
true 返回原始流数据
3hash(string $algo,srting $str,bool $flag);
$algo : 算法名称,可通过hash_algos()函数获取所有hash加密的算法
如:md5,sha1等,采用md5,sha1加密所得结果和1,2两种方式结 果相同。
$flag = false 默认返回16进至的数据散列值,具体长度根据算法不同
而不同。
true 返回原始流数据。
4crypt(string $str,$string $salt);
函数返回使用 DES、Blowfish 或 MD5 算法加密的字符串。
具体算法依赖于PHP检查之后支持的算法和$salt的格式和长度,当 然具体结果也和 *** 作系统有关。比较结果采用 hash_equals($crypted,crypt($input,$salt));//且salt值相同
Password_verify($str,$crypted);
5password_hash ( string $str, integer $algo [, array $options ] )
函数返回哈希加密后的密码字符串, password_hash() 是crypt()的 一个简单封装
$algo : 算法 PASSWORD_DEFAULT ,PASSWORD_BCRYPT
$options = [
“cost”=>10,//指明算法递归的层数,
“salt”=>“xxadasdsad”//加密盐值,即将被遗 弃,采用系统自动随机生成安全性更高
];
使用的算法、cost 和盐值作为哈希的一部分返回
Password_verify($str,$hashed);
6base64_encode(string $str)
设计此种编码是为了使二进制数据可以通过非纯 8-bit 的传输层 传输,例如电子邮件的主体。base64_decode(string $encoded)
可以进行解码;
7mcrypt_encrypt ( string $cipher , string $key , string $data ,
string $mode [, string $iv ] )
mcrypt_decrypt ( string $cipher , string $key , string $crypted ,
string $mode [, string $iv ] )
$ciper:加密算法,mcrypt_list_algorithms()可以获取该函数所有支持的算法
如MCRYPT_DES(“des”),MCRYPT_RIJNDAEL_128(“rijndael-128”);
$mode : 加密模式 ,mcrypt_list_modes()获取所有支持的加密模式,ecb,cbc
$key: 加密的秘钥,mcrypt_get_key_size ( string $cipher , string $mode )
获取指定的算法和模式所需的密钥长度。$key要满足这个长度,如果长 度无效会报出警告。
$iv : 加密的初始向量,可通过mcrypt_create_iv ( int $size [, int $source = MCRYPT_DEV_URANDOM ] ),
Iv的参数size:
通过mcrypt_get_iv_size ( string $cipher , string $mode )获取
Iv 的参数source:
初始向量数据来源。可选值有: MCRYPT_RAND (系统随机数生成 器), MCRYPT_DEV_RANDOM (从 /dev/random 文件读取数据) 和 MCRYPT_DEV_URANDOM (从 /dev/urandom 文件读取数据)。 在 Windows 平台,PHP 530 之前的版本中,仅支持 MCRYPT_RAND。
请注意,在 PHP 560 之前的版本中, 此参数的默认值 为 MCRYPT_DEV_RANDOM。
Note: 需要注意的是,如果没有更多可用的用来产生随机数据的信息, 那么 MCRYPT_DEV_RANDOM 可能进入阻塞状态。
$data : 要加密的字符串数据
在Windows
XP中确实可以直接对文件(夹)进行加密,但是,这需要一个前提:要加密的文件(夹)所在的硬盘分区是NFTS格式的。如果你的硬盘分区不是NFTS格式,请进行 *** 作转换后,再按下面的方法进行加密。
选中需要加密的文件(夹),右击鼠标键,在随后d出的快捷菜单中,选“属性”选项,在“常规”标签中,按“高级”按钮打开“高级属性”对话框,选中其中的“加密内容以便保护数据”选项后,确定退出即可。
特别需要提醒的是:如果用上述方法对文件(夹)进行了加密,以后重新安装系统之前,最好对它进行解密(解密与加密方法相似) *** 作,否则系统重装后,可能造成文件(夹)不能正常打开。
开发中常见的加密方式及应用
一、base64
简述:Base64是网络上最常见的用于传输8Bit 字节码 的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法。所有的数据都能被编码为并只用65个字符就能表示的文本文件。( 65字符:A~Z a~z 0~9 + / = )编码后的数据~=编码前数据的4/3,会大1/3左右(转化为base64格式会比原图大一些)。
应用:Base64编码是从二进制到字符的过程,可用于在 HTTP 环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base64来将一个较长的唯一 标识符 (一般为128-bit的UUID)编码为一个字符串,用作HTTP 表单 和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制 数据编码 为适合放在URL(包括隐藏 表单域 )中的形式。此时,采用Base64编码具有不可读性,需要解码后才能阅读。
命令行进行Base64编码和解码
编码:base64 123png -o 123txt
解码:base64 123txt -o testpng -D Base64编码的原理
原理:
1)将所有字符转化为ASCII码;
2)将ASCII码转化为8位二进制;
3)将二进制3个归成一组(不足3个在后边补0)共24位,再拆分成4组,每组6位;
4)统一在6位二进制前补两个0凑足8位;
5)将补0后的二进制转为十进制;
6)从Base64编码表获取十进制对应的Base64编码;
Base64编码的说明:
a转换的时候,将三个byte的数据,先后放入一个24bit的缓冲区中,先来的byte占高位。
b数据不足3byte的话,于缓冲区中剩下的bit用0补足。然后,每次取出6个bit,按照其值选择查表选择对应的字符作为编码后的输出。
c不断进行,直到全部输入数据转换完成。
d如果最后剩下两个输入数据,在编码结果后加1个“=”;
e如果最后剩下一个输入数据,编码结果后加2个“=”;
f如果没有剩下任何数据,就什么都不要加,这样才可以保证资料还原的正确性。
二、HASH加密/单向散列函数
简述:Hash算法特别的地方在于它是一种单向算法,用户可以通过Hash算法对目标信息生成一段特定长度(32个字符)的唯一的Hash值,却不能通过这个Hash值重新获得目标信息。对用相同数据,加密之后的密文相同。 常见的Hash算法有MD5和SHA。由于加密结果固定,所以基本上原始的哈希加密已经不再安全,于是衍生出了加盐的方式。加盐:先对原始数据拼接固定的字符串再进行MD5加密。
特点:
1) 加密 后密文的长度是定长(32个字符的密文)的
2)如果明文不一样,那么散列后的结果一定不一样
3)如果明文一样,那么加密后的密文一定一样(对相同数据加密,加密后的密文一样)
4)所有的加密算法是公开的
5)不可以逆推反算(不能根据密文推算出明文),但是可以暴力 破解 ,碰撞监测
原理:MD5消息摘要算法,属Hash算法一类。MD5算法对输入任意长度的消息进行运行,产生一个128位的消息摘要。
1)数据填充
对消息进行数据填充,使消息的长度对512取模得448,设消息长度为X,即满足X mod 512=448。根据此公式得出需要填充的数据长度。
填充方法:在消息后面进行填充,填充第一位为1,其余为0。
2)添加信息长度
在第一步结果之后再填充上原消息的长度,可用来进行的存储长度为64位。如果消息长度大于264,则只使用其低64位的值,即(消息长度 对264取模)。
在此步骤进行完毕后,最终消息长度就是512的整数倍。
3)数据处理
准备需要用到的数据:
4个常数:A = 0x67452301, B = 0x0EFCDAB89, C = 0x98BADCFE, D = 0x10325476;
4个函数:F(X,Y,Z)=(X & Y) | ((~X) & Z);G(X,Y,Z)=(X & Z) | (Y & (~Z));H(X,Y,Z)=X ^ Y ^ Z;I(X,Y,Z)=Y ^ (X | (~Z));
把消息分以512位为一分组进行处理,每一个分组进行4轮变换,以上面所说4个常数为起始变量进行计算,重新输出4个变量,以这4个变量再进行下一分组的运算,如果已经是最后一个分组,则这4个变量为最后的结果,即MD5值。
三、对称加密
经典算法:
1)DES数据加密标准
DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。
DES算法是这样工作的:如Mode为加密,则用Key去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
2)3DES使用3个密钥,对消息进行(密钥1·加密)+(密钥2·解密)+(密钥3·加密)
3)AES高级加密标准
如图,加密/解密使用相同的密码,并且是可逆的
四、非对称加密
特点:
1)使用公钥加密,使用私钥解密
2)公钥是公开的,私钥保密
3)加密处理安全,但是性能极差
经典算法RSA:
1)RSA原理
(1)求N,准备两个质数p和q,N = p x q
(2)求L,L是p-1和q-1的最小公倍数。L = lcm(p-1,q-1)
(3)求E,E和L的最大公约数为1(E和L互质)
(4)求D,E x D mode L = 1
五、数字签名
原理以及应用场景:
1)数字签名的应用场景
需要严格验证发送方身份信息情况
2)数字签名原理
(1)客户端处理
对"消息"进行HASH得到"消息摘要"
发送方使用自己的私钥对"消息摘要"加密(数字签名)
把数字签名附着在"报文"的末尾一起发送给接收方
(2)服务端处理
对"消息" HASH得到"报文摘要"
使用公钥对"数字签名"解密
对结果进行匹配
六、数字证书
简单说明:
证书和驾照很相似,里面记有姓名、组织、地址等个人信息,以及属于此人的公钥,并有认证机构施加数字签名,只要看到公钥证书,我们就可以知道认证机构认证该公钥的确属于此人。
数字证书的内容:
1)公钥
2)认证机构的数字签名
证书的生成步骤:
1)生成私钥openssl genrsa -out privatepem 1024
2)创建证书请求openssl req -new -key privatepem -out rsacertcsr
3)生成证书并签名,有效期10年openssl x509 -req -days 3650 -in rsacertcsr -signkey privatepem -out rsacertcrt
4)将PEM格式文件转换成DER格式openssl x509 -outform der -in rsacertcrt -out rsacertder
5)导出P12文件openssl pkcs12 -export -out pp12 -inkey privatepem -in rsacertcrt
iOS开发中的注意点:
1)在iOS开发中,不能直接使用PEM格式的证书,因为其内部进行了Base64编码,应该使用的是DER的证书,是二进制格式的;
2)OpenSSL默认生成的都是PEM格式的证书。
七、https
HTTPS和HTTP的区别:
超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息。HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可以直接读懂其中的信息,因此HTTP协议不适合传输一些敏感信息,比如xyk号、密码等。
为了解决HTTP协议的这一缺陷,需要使用另一种协议:安全套接字层超文本传输协议HTTPS。为了数据传输的安全,HTTPS在HTTP的基础上加入了SSL协议,SSL依靠证书来验证服务器的身份,并为浏览器和服务器之间的通信加密。
HTTPS和HTTP的区别主要为以下四点:
1)https协议需要到ca申请证书,一般免费证书很少,需要交费。
2)http是 超文本传输协议 ,信息是明文传输,https则是具有 安全性 的 ssl 加密传输协议。
3)http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。
4)http的连接很简单,是无状态的;HTTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的 网络协议 ,比http协议安全。
5)SSL:Secure Sockets Layer安全套接字层;用数据加密(Encryption)技术,可确保数据在网络上传输过程中不会被截取及窃听。目前一般通用之规格为40 bit之安全标准,美国则已推出128 bit之更高安全标准,但限制出境。只要30版本以上之IE或Netscape 浏览器 即可支持SSL。目前版本为30。SSL协议位于TCP/IP协议与各种应用层协议之间,为数据通讯提供安全支持。SSL协议可分为两层:SSL记录协议(SSL Record Protocol):它建立在可靠的传输协议(如TCP)之上,为高层协议提供数据封装、压缩、加密等基本功能的支持。SSL握手协议(SSL Handshake Protocol):它建立在SSL记录协议之上,用于在实际的数据传输开始前,通讯双方进行身份认证、协商加密算法、交换加密密钥等。
生活中我们对文件要签名,签名的字迹每个人不一样,确保了独特性,当然这还会有模仿,那么对于重要文件再加盖个手印,指纹是独一无二的,保证了这份文件是我们个人所签署的。
那么在区块链世界里,对应的就是数字签名,数字签名涉及到公钥、私钥、哈希、加密算法这些基础概念。
首先加密算法分为对称加密算法、非对称加密算法、哈希函数加密算法三类。
所谓非对称加密算法,是指加密和解密用到的公钥和私钥是不同的,非对称加密算法依赖于求解一数学问题困难而验证一数学问题简单。
非对称加密系统,加密的称为公钥,解密的称为私钥,公钥加密,私钥解密、私钥签名,公钥验证。
比特币加密算法一共有两类:非对称加密算法(椭圆曲线加密算法)和哈希算法(SHA256,RIMPED160算法)
举一个例子来说明这个加密的过程:A给B发一个文件,B怎么知道他接收的文件是A发的原始文件?
A可以这样做,先对文件进行摘要处理(又称Hash,常见的哈希算法有MD5、SHA等)得到一串摘要信息,然后用自己的私钥将摘要信息加密同文件发给B,B收到加密串和文件后,再用A的公钥来解密加密串,得到原始文件的摘要信息,与此同时,对接收到的文件进行摘要处理,然后两个摘要信息进行对比,如果自己算出的摘要信息与收到的摘要信息一致,说明文件是A发过来的原始文件,没有被篡改。否则,就是被改过的。
数字签名有两个作用:
一是能确定消息确实是由发送方签名并发出来的;
二是数字签名能确定消息的完整性。
私钥用来创建一个数字签名,公钥用来让其他人核对私人密钥,
而数字签名做为一个媒介,证明你拥有密码,同时并不要求你将密码展示出来。
以下为概念的定义:
哈希(Hash):
二进制输入数据的一种数字指纹。
它是一种函数,通过它可以把任何数字或者字符串输入转化成一个固定长度的输出,它是单向输出,即非常难通过反向推导出输入值。
举一个简单的哈希函数的例子,比如数字17202的平方根是13115639519291463,通过一个简单的哈希函数的输出,它给出这个计算结果的后面几位小数,如后几位的9291463,通过结果9291463我们几乎不可能推算出它是哪个输入值的输出。
现代加密哈希比如像SHA-256,比上面这个例子要复杂的多,相应它的安全性也更高,哈希用于指代这样一个函数的输出值。
私钥(Private key):
用来解锁对应(钱包)地址的一串字符,例如5J76sF8L5jTtzE96r66Sf8cka9y44wdpJjMwCxR3tzLh3ibVPxh+。
公钥(Public keycryptography):
加密系统是一种加密手段,它的每一个私钥都有一个相对应的公钥,从公钥我们不能推算出私钥,并且被用其中一个密钥加密了的数据,可以被另外一个相对应的密钥解密。这套系统使得你可以先公布一个公钥给所有人,然后所有人就可以发送加密后的信息给你,而不需要预先交换密钥。
数字签名(Digital signature):
Digital signature数字签名是这样一个东西,它可以被附着在一条消息后面,证明这条消息的发送者就是和某个公钥相对应的一个私钥的所有人,同时可以保证私钥的秘密性。某人在检查签名的时候,将会使用公钥来解密被加密了的哈希值(译者注:这个哈希值是数据通过哈希运算得到的),并检查结果是否和这条信息的哈希值相吻合。如果信息被改动过,或者私钥是错误的话,哈希值就不会匹配。在比特币网络以外的世界,签名常常用于验证信息发送者的身份 – 人们公布他们自己的公钥,然后发送可以被公钥所验证的,已经通过私钥加密过的信息。
加密算法(encryption algorithm):
是一个函数,它使用一个加密钥匙,把一条信息转化成一串不可阅读的看似随机的字符串,这个流程是不可逆的,除非是知道私钥匙的人来 *** 作。加密使得私密数据通过公共的因特网传输的时候不需要冒严重的被第三方知道传输的内容的风险。
哈希算法的大致加密流程
1、对原文进行补充和分割处理(一般分给为多个512位的文本,并进一步分割为16个32位的整数)。
2、初始化哈希值(一般分割为多个32位整数,例如SHA256就是256位的哈希值分解成8个32位整数)。
3、对哈希值进行计算(依赖于不同算法进行不同轮数的计算,每个512位文本都要经过这些轮数的计算)。
区块链中每一个数据块中包含了一次网络交易的信息,产生相关联数据块所使用的就是非对称加密技术。非对密加密技术的作用是验证信息的有效性和生成下一个区块,区块链上网络交易的信息是公开透明的,但是用户的身份信息是被高度加密的,只有经过用户授权,区块链才能得到该身份信息,从而保证了数据的安生性和个人信息的隐私性。
公钥和私钥在非对称加密机制里是成对存在的,公钥和私钥可以去相互验证对方,那么在比特币的世界里面,我们可以把地址理解为公钥,可以把签名、输密码的过程理解为私钥的签名。
每个矿工在拿到一笔转账交易时候都可以验证公钥和私钥到底是不是匹配的,如果他们是匹配的,这笔交易就是合法的,这样每一个人只需要保管好TA自己的私钥,知道自己的比特币地址和对方的比特币地址就能够安全的将比特币进行转账,不需要一个中心化的机构来验证对方发的比特币是不是真的。
通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义: 将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值 。
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:
哈希算法的应用非常广泛,在这里就介绍七点应用:
有很多著名的哈希加密算法:MD5、SHA、DES它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的 鸽巢原理 就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2 128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。
假设我们有100万个,如果我们在中寻找某一个是非常耗时的,这是我们就可以使用哈希算法的原理为设置唯一标识。比如,我们可以从的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为的唯一标识。
使用这个唯一标识判断是否在图库中,这可以减少甚多工作量。
在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。
在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。
接下来的三个应用主要是在分布式系统中的应用
复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。
借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。
假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?
分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。
针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。
针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存、CPU等资源的限制。
处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。
你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。
哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。
其实在这里我想说的是一个思想: 用优势弥补不足 。
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是: CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。
以上就是哈希的全部内容
一、哈希HASH
哈希(散列)函数 MD5 SHA1/256/512 HMAC
Hash的特点:
1算法是公开的
2对相同数据运算,得到的结果是一样的
3对不同数据运算,如MD5得到的结果是128位,32个字符的十六进制表示,没法逆运算
1MD5加密
MD5加密的特点:
不可逆运算
对不同的数据加密的结果是定长的32位字符(不管文件多大都一样)
对相同的数据加密,得到的结果是一样的(也就是复制)。
抗修改性 : 信息“指纹”,对原数据进行任何改动,哪怕只修改一个字节,所得到的 MD5 值都有很大区别
弱抗碰撞 : 已知原数据和其 MD5 值,想找到一个具有相同 MD5 值的数据(即伪造数据)是非常困难的
强抗碰撞: 想找到两个不同数据,使他们具有相同的 MD5 值,是非常困难的
MD5 应用:
一致性验证:MD5将整个文件当做一个大文本信息,通过不可逆的字符串变换算法,产生一个唯一的MD5信息摘要,就像每个人都有自己独一无二的指纹,MD5对任何文件产生一个独一无二的数字指纹。
那么问题来了,你觉得这个MD5加密安全吗?其实是不安全的,不信的话可以到这个网站试试:md5破解网站。可以说嗖地一下就破解了你的MD5加密!
2SHA加密
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。当让除了SHA1还有SHA256以及SHA512等。
二、base64加密
1Base64说明
描述:Base64可以成为密码学的基石,非常重要。
特点:可以将任意的二进制数据进行Base64编码
结果:所有的数据都能被编码为并只用65个字符就能表示的文本文件。
65字符:A~Z a~z 0~9 + / =
对文件进行base64编码后文件数据的变化:编码后的数据~=编码前数据的4/3,会大1/3左右。
2命令行进行Base64编码和解码
编码:base64 123png -o 123txt
解码:base64 123txt -o testpng -D
2Base64编码原理
1)将所有字符转化为ASCII码;
2)将ASCII码转化为8位二进制;
3)将二进制3个归成一组(不足3个在后边补0)共24位,再拆分成4组,每组6位;
4)统一在6位二进制前补两个0凑足8位;
5)将补0后的二进制转为十进制;
6)从Base64编码表获取十进制对应的Base64编码;
处理过程说明:
a转换的时候,将三个byte的数据,先后放入一个24bit的缓冲区中,先来的byte占高位。
b数据不足3byte的话,于缓冲区中剩下的bit用0补足。然后,每次取出6个bit,按照其值选择查表选择对应的字符作为编码后的输出。
c不断进行,直到全部输入数据转换完成。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)