1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a)[M^(1/n)]=log(a)(M)/n
扩展资料:
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
有理和无理指数
如果 是正整数, 表示等于 的 个因子的加减:
但是,如果是 不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。
对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。
复对数
复对数计算公式
复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。
运算法则公式如下:
1、lnx+ lny=lnxy
2、lnx-lny=ln(x/y)
3、lnxⁿ=nlnx
4、ln(ⁿ√dux)=lnx/n
5、lne=1
6、ln1=0
相关简介
1、对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
2、对数运算,实际上也就是指数在运算。
一、四则运算法则
log(AB)=logA+logB;
log(A/B)=logA-logB;
logN^x=xlogN。
二、换底公式
logM/N=logM/logN。
三、换底公式导出
logM/N=-logN/M。
四、对数恒等式
a^(logM)=M。
log的函数性质
函数y=log(a)X,(其中a是常数,a>0且不等于1 )叫作对数函数它实际上就是指数函数的反函数,可表示为x=a^y因此指数函数里对于a的规定,同样适用于对数函数。
Log函数定义域即log后面的定义域> 0 ,如y=logx ,定义域即x>0 , logx的值域为R。对数函数是以幂(真数)为自变量,指数为因变量,底数为常的函数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)