如下图:
伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。
相关信息:
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16可以用通项公式n²自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x²通过所有的整数点(n,n²),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,,我们可以计算2!,3!,是否可以计算25!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。
伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
(1)在实数域上伽玛函数定义为:
(2)在复数域上伽玛函数定义为:
扩展资料
伽马函数产生的背景:
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16可以用通项公式n²自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛 函数的诞生,当时欧拉只有22岁。
-伽玛函数
具体见:
是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
扩展资料:
伽玛函数的定义(或叫第二类欧拉积分):
Γ(x)=积分:e^(-t)*t^(x-1)dt
(e的负t次方乘以的(x-1)次方),积分区间是0到正无穷,x>0
而可以把x延拓到复平面上,除了0和负整数的点.这里,利用Γ函数在x>0的区间上的性质Γ(x+1)=xΓ(x)
,可以定义:
Γ(z)=Γ(z+n+1)/z(z+1)(z+2)...(z+n)
在正整数的范围内,由于Γ(x+1)=xΓ(x)
关系,Γ(n+1)=n!
这样,因为z可以取非整数,我们就用伽玛函数延拓了阶乘的定义.定义x!=Γ(x+1),这里x可以取非整数。
参考资料:
就是伽玛函数。
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x) 当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
如Γ(5)=4321。
伽马函数(1/2)的值可以根据余元公式算出,余元公式的定义是对0-1之间的数,有
将1/2代入得到伽玛函数(1/2)的值是Π^(1/2)。
扩展资料
余元公式是求解伽玛函数的重要公式,对于数值在0-1之间的实数,可以方便简单地求解函数的值,对于研究伽玛函数的性质有重要的作用。由此可以推出以下重要的概率公式:
伽玛函数也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:
参考资料-伽玛函数
具体见:
是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
扩展资料:
在Matlab中的应用
其表示N在N-1到0范围内的整数阶乘。
公式为:gamma(N)=(N-1)(N-2)21
例如:
gamma(6)=54321
ans=120
性质:
1、通过分部积分的方法,可以推导出这个函数有如下的递归性质:
Γ(x+1)=xΓ(x)于是很容易证明,伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:
2、与贝塔函数的关系:
3、在概率的研究中有一个重要的分布叫做伽玛分布:其中 。
4、对 ,有这个公式称为余元公式。
由此可以推出以下重要的概率公式:
5、对于 ,伽马函数是严格凹函数。
6、伽马函数是亚纯函数,在复平面上,除了零和负整数点以外,它全部解析,而伽马函数在 处的留数为。
参考资料:
Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数。
伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!
阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。
含义
在概率统计和其他应用学科中会经常用到伽玛函数和贝塔函数,有的反常积分的计算最后也会归结为贝塔函数或伽玛函数。
当P>0且Q>0时贝塔函数收敛。贝塔函数具有很好的性质,以及实用的递推公式,另外需要注意的是伽玛函数和贝塔函数之间的关系。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)