色度学中颜色刺激函数?
色度学中,只有三刺激值函数,或者颜色反射率函数。
X、Y、Z三刺激值函数,是不同波长辐射对X、Y、Z三刺激值的贡献。例如555nm的辐射量为100,那么它对X刺激值的贡献为10005121=5121、对Y刺激值的贡献为1001=100,对Z刺激值的贡献为100000575=0575。
某光谱所有波长(380-780nm)辐射的对X、Y、Z三刺激值贡献的和,就是该光谱的三刺激值。
其中Y刺激值又表示亮度。
通过该光谱的三刺激值,算出该光谱色坐标:x=X/(X+Y+Z)、y=Y/(X+Y+Z)
如果是照明光谱,用色坐标又可以算出该光谱的色温。
色坐标,就是颜色的坐标。
现在常用的颜色坐标,横轴为 x ,纵轴为 y 。有了色坐标,可以在色度图上确定一个点。这个点精确表示了发光颜色。即:色坐标精确表示了颜色。
因为色坐标有两个数字,又不直观,所以大家喜欢用色温来大概表示照明光源的发光颜色。
其实,色温是通过色坐标算出来的,不通过色坐标是得不出色温的,要么是“大概”、“也许”的。
色坐标表示方法:
色彩的坐标系即表色系,国际上色彩的定量表述有孟塞尔表色系统、CIE表色系统等,各系统之间在一定条件下可以转换。
1、孟塞尔表色系
孟塞尔表色系描述色彩的三个要素是,色相、彩度、明度。
色相:色彩的相貌,是区别色彩种类的名称;
明度:色彩的明暗程度,即色彩的深浅差别,明度差别指同色的深浅变化,也指不同色相之间存在的明度差别;
彩度:又称纯度或饱和度,指色彩的纯净程度。
孟塞尔表色系认为,互补的色相对比可通过调整明度差别来取得谐调,即高明度基色可配其低明度的补色来做补偿。配色中较强的色要缩小面积,较弱的色要扩大面积。TFT-LCD的像素大小、色层厚度等光学相关物理参数都是固定的,所以在TFT-LCD中使用孟塞尔色彩体系还原五颜六色的物体在光学和材料上很难 *** 作。
2、RGB表色系
三原色可以合成包括单色光在内的所有的颜色。不同的待配色光达到匹配时三原色光亮度不同,用颜色方程C=R(R)+G(G)+B(B)表示,其中(R)、(G)、(B)代表代表产生混合色的红、绿、蓝三原色的单位量,R、G、B分别为匹配待配色所需要的红、绿、蓝三原色的数量,称为三刺激值。把等能量的单色光,用三刺激值分别求出各自在RGB三维空间的坐标,得到CIE1931xy色度图。
3、XYZ表色系
CIE在RGB表色系基础上,改用三个假想的原色XYZ建立了一个新的色度系统,将它匹配等能光谱的三刺激值,定名为CIE1931标准色度观察者光谱三刺激值,简称XYZ表色系。经过变换,色度坐标均为正值,XY坐标进行归一化处理,可得到x-y色度坐标,又称CIExyY色度图,其中Y轴用于表示亮度。
LED灯珠参数1、亮度 LED的亮度不同,价格不同。 灯杯:一般亮度为60-70lm; 球泡灯:一般亮度为80-90lm 注:1W亮度为60-110lm3W亮度最高可达240lm5W-300W是集成芯片,用串/并联封装,主要看多少电流,电压,几串几并。 1W红光,亮度一般为30-40lm;1W绿光,亮度一般为60-80lm;1W黄光,亮度一般为30-50lm;1W蓝光,亮度一般为20-30lm LED透镜:一次透镜一般用PMMA、PC、光学玻璃、硅胶(软硅胶,硬硅胶)等材料。角度越大出光效率越高,用小角度的LED透镜,光线要射得远的。 2、抗静电能力 抗静电能力强的LED,寿命长,因而价格高。通常抗静电大于700V的LED才能用于LED灯饰 3、波长 波长一致的LED,颜色一致,如要求颜色一致,则价格高。没有LED分光分色仪的生产商很难生产色彩纯正的产品。 大功率LED灯珠详细参数及点光源选择技巧 白光分暖色(色温2700-4000K),正白(色温5500-6000K),冷白(色温7000K以上)欧洲人比较喜欢暖白 红光:波段600-680,其中620,630主要用于舞台灯,690接近红外线 蓝光:波段430-480,其中460,465舞台灯用的较多。 绿光:波段500-580,其中525,530舞台灯用的较多。 4、漏电电流 LED是单向导电的发光体,如果有反向电流,则称为漏电,漏电电流大的LED,寿命短,价格低。 5、发光角度 用途不同的LED其发光角度不一样。特殊的发光角度,价格较高。 6、寿命 不同品质的关键是寿命,寿命由光衰决定。光衰小、寿命长,寿命长,价格高。 7、LED芯片 LED的发光体为芯片,不同的芯片,价格差异很大。日本、美国的芯片较贵,台厂与中国本土厂商的LED芯片价格低于日、美。 8、芯片大小 芯片的大小以边长表示,芯片尺寸一般为:38-45mΩ,大芯片LED的品质比小芯片的要好。价格同芯片大小成正比。 9、胶体 普通的LED的胶体一般为环氧树脂,加有抗紫外线及防火剂的LED价格较贵,高品质的户外LED灯饰应抗紫外线及防火。 大功率LED灯珠详细参数及点光源选择技巧 10、显色值 正白:60-6,暖白:50-60,由于不同公司使用的封装荧光粉不一样,所以显色值也不一样。从健康方面,采用无毒材料设计的产品价格要高,特别是室内LED灯饰,千万别贪便宜选用有异味的LED灯饰,目前仅少数几家LED厂家是用无毒材料生产,辨别的方法可以直接用鼻子分别,有臭味的产品比无臭味的价格更低很多。类似铅、汞、镉等毒素需专业人员分析。从适用环境安全看,有可靠的防尘防潮设计,材料防火、防紫外线、防低温开裂的LED产品的价格高。LED的技术参数主要有发光强度,色度,波长,色温等。下面我们就这些参数给予简单的介绍。光强度(LuminousIntensity;IV) 光强度定义为单位立体角所发射出的光通量,单位为烛光(Candela,cd)。一般而言,光源会向不同方向以不同强度放射出其光通量,在特定方向单位立体角所放出之可见光辐射强度即称之为光强度。色度(Chromaticity) 人眼对色彩的感知是一种错综复杂的过程,为了将色彩的描述加以量化,国际照明协会(CIE)根据标准观测者的视觉实验,将人眼对不同波长的辐射能所引起的视觉感加以纪录,计算出红、绿、蓝三原色的配色函数,经过数学转换后即得所谓的CIE1931ColorMatchingFunction(x((),y((),z(()),而根据此一配色函数,后续发展出数种色彩度量定义,使人们得以对色彩加以描述运用。 根据CIE1931配色函数,将人眼对可见光的刺激值以XYZ表示,经下列公式换算得到x,y值,即CIE1931(x,y)色度坐标,透过此统一标准,对色彩的描述便得以量化并加以控制。 x,y:CIE1931色度坐标值(ChromaticityCoordinates) 然而,由于以(x,y)色度坐标所建构之色域为非均匀性,使色差难以量化表示,所以CIE于1976年将CIE1931色度坐标加以转换,使其所形成之色域为接近均匀之色度空间,让色彩差异得以量化表示,即CIE1976UCS(UniformChromaticityScale)色度坐标,以(u’,v’)表示,计算公式如下所示:主波长(λD) 其亦为表达颜色的方法之一,在得到待测件的色度坐标(x,y)后,将其标示于CIE色度坐标图(如下图)上,连结E光源色度点(色度坐标(x,y)=(0333,0333))与该点并延伸该连结线,此延长线与光谱轨迹(马蹄形)相交的波长值即称之为该待测件的主波长。惟应注意的是,此种标示方法下相同主波长将代表多个不同色度点,是以用于待测件色度点邻近光谱轨迹时较具意义,而白光LED则无法以此种方式描述其颜色特性。纯度(Purity) 其为以主波长描述颜色时之辅助表示,以百分比计,定义为待测件色度坐标与E光源之色度坐标直线距离与E光源至该待测件主波长之光谱轨迹(SpectralLocus)色度坐标距离的百分比,纯度愈高,代表待测件的色度坐标愈接近其该主波长的光谱色,是以纯度愈高的待测件,愈适合以主波长描述其颜色特性,LED即是一例。色温(ColorTemperature) 一光源之辐射能量分布与某一绝对温度下之标准黑体(BlackBodyRadiator)辐射能量分布相同时,其光源色度与此黑体辐射之色度相同,此时光源色度以所对应之绝对温度表之,此温度称之为色温(ColorTemperature),而在各温度下之黑体辐射所呈现之色度可在色度图上标出曲线,称之为蒲朗克轨迹(PlanckianLocus)。标准黑体的温度愈高,其辐射出的光线对人眼产生蓝色刺激愈多,红色刺激成分亦相对减少。然而在实际量测上,无任何光源具有跟黑体相同的辐射能量分布,换言之,待测光源之色度通常并未落在蒲朗克轨迹上。因此计算待测光源之色度坐标所最接近蒲朗克轨迹上某个坐标点,此点之黑体温度即定义为该光源之相关色温(CorrelatedColorTemperature;CCT),通常以CIE1960UCS(u,v)色度图求之,并配合色差△uv加以描述。须注意的是,此种表示方式对光源色度邻近蒲朗克轨迹时方具意义,是以对于LED量测而言,仅适用于白光LED之颜色
光谱分布图及波长是电磁波。
光谱分布图一般人的眼睛可以感知的电磁波的频率在380 ~ 750THz,波长在780~400nm之间。
光的波长与频率的关系由光速确定。ν的单位为Hz,λ的单位为cm,c为真空中的光速。
光谱分布图
光谱分布图而方太脉冲快消消毒柜所采用的脉冲光技术是一种利用脉冲形式激发强烈全光谱光源的杀菌消毒技术,全名360°脉冲快消科技。它通过专门的电路设计储能,然后在极短时间内全部释放,形成高能量脉冲光线。
并且这种光线不仅仅包含紫外线,还有红外线、可见光,光谱覆盖广、能量高,相比传统紫外线,峰值能量是其4800倍,因此脉冲光能够更全面覆盖柜内餐具,快速让细菌和病毒失去活性。
任何一个颜色都可以看作为用某一个光谱色按一定比例与一个参照光源(如CIE标准光源A、B、C等,等能光源E,标准照明体D65等)相混合而匹配出来的颜色,这个光谱色就是颜色的主波长。颜色的主波长相当于人眼观测到的颜色的色调(心理量)。若已获得被测LED器件的色度坐标,就可以采用等能白光E光源(x0=0333314,y0=0333288)作为参照光源来计算决定颜色的主波长。计算时根据色度图上连接参照光源色度点与样品颜色色度点的直线的斜率,查表读出直线与光谱轨迹的交点,确定主波长。
自然界的色彩是千差万别的,人们之所以能对如此繁多的色彩加以区分,是因为每一种颜色都有自己的鲜明特征。
日常生活中,人们观察颜色,常常与具体事物联系在一起。人们看到的不仅仅是色光本身,而是光和物体的统一体。当颜色与具体事物联系在一起被人们感知时,在很大程度上受心理因素(如记忆,对比等)的影响,形成心理颜色。为了定性和定量地描述颜色,国际上统一规定了鉴别心理颜色的三个特征量即色相、明度和饱和度。心理颜色的三个基本特征,又称为心理三属性,大致能与色度学的颜色三变数---主波长、亮度和纯度相对应。色相对应于主波长,明度对应于亮度,饱和度对应于纯度。这是颜色的心理感觉与色光的物理刺激之间存在的对应关系。每一特定的颜色,都同时具备这三个特征。
基线是检测器在没有进样时信号随时间的变化曲线,一般为噪音随时间的变化曲线,正常情况下在灵敏度不是很高时为一平直的线
紫外可见分光光度计的光度噪声直接影响仪器的信噪比。它是限制分析检测浓度下限的主要因素。目前,全世界紫外可见分光光度计的生产厂商,给出的整机光度噪声都是指仪器在500nm处的光度噪声(称之为整机的光度噪声),主要用于比较不同仪器的优劣;而紫外可见分光光度计的使用者往往要在不同波长上使用,特别要在紫外区使用。所以,只给出500nm处的整机光度噪声,不能满足使用者使用的要求。因此,提出了基线平直度的概念,紫外可见分光光度计的基线平直度是指每个波长上的光度噪声,它是用户最关心的技术指标之一。它是紫外可见分光光度计各个波长上主要分析误差的来源之一。它决定紫外可见分光光度计在各个波长下的分析检测浓度的下限(或决定各个波长下仪器的灵敏度)。它应是广大使用者非常注重的关键技术指标之一,所以,一切紫外可见分光光度计的设计者、生产者和使用者都要高度重视基线平直度这个技术指标[2] 。
目前对紫外可见分光光度计的基线平直度的重要性尚未引起足够重视,在基线平直度的运用方面还有许多错误,其具体表现如下:[3]
1) 制造商不给仪器的基线平直度指标。
2) 盲目给基线平直度,如许多制造商,将基线平直度千篇一律低写成±0001
3) 给出错误的基线平直度,许多制造厂不给出仪器全波长范围内的基线平直度,如许多仪器给出的波长范围为190~1100nm或190~900nm,但给出的基线平直度,只能适合波长范围为220~950nm或210~800nm。
以上三种做法都是不对的。
1) 如果不给基线平直度,使用者将不知自己所使用的波长上的噪声或灵敏度,不便选择仪器条件;因此,不易得到最佳分析结果。
2) 并非高档紫外可见分光光度计的基线平直度都是±0001。如国内某厂给出的高档紫外可见分光光度计的基线平直度为±0001,实测为±0004,相差4倍。
3) 不给全波长范围内的基线平直度,更是不对的。第一,未搞清基线平直度的概念或定义;第二,不能保证紫外可见分光光度计的波长使用范围,可以说是虚指标;第三,会误导使用者,使使用者误认为制造厂给的基线平直度就是指的全波长范围内的基线平直度。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)