伯德图的基本概念

伯德图的基本概念,第1张

伯德图是由贝尔实验室的荷兰裔科学家亨Bode,HW 在1940年提出 。Bode发明了一种简单但准确的方法绘制增益及相位的图,这样的图后来也就称为了伯德图。

伯德图是线性非时变系统的传递函数对频率的半对数坐标图,其横轴频率以对数尺度(log scale)表示,纵坐标幅值或相角采用线性分度,利用伯德图可以看出系统的频率响应。伯德图一般是由二张图组合而成, 伯德图由两张图组成:①G(jω)的幅值(以分贝,dB表示)-频率(以对数标度)对数坐标图,其上画有对数幅频曲线;②G(jω)的相角-频率(以对数标度)对数坐标图,其上画有相频曲线。

对数幅值的标准表达式为20 lg|G(jω)|,单位是分贝,相角的单位是度。由于增益用对数来表示(log(ab)=log(a)+log(b)),因此一传递函数乘以一常数,在伯德增益图只需将图形的纵向移动即可,二传递函数的相乘,在波德幅频图就变成图形的相加。幅频图纵轴0分贝以下具有正增益裕度、属稳定区,反之属不稳定区。

配合波德相频图可以估算一信号进入系统后,输出信号及原始信号的比例关系及相位。例如一个Asin(ωt) 的信号进入系统后振幅变原来的k倍,相位落后原信号Φ,则其输出信号则为(Ak)sin(ωt−Φ),其中的k和Φ都是频率的函数。相频图纵轴-180度以上具有正相位裕度、属稳定区,反之属不稳定区。

若低频段不保持0(db),则有比例环节。若低频段斜率不为0(db/dec),则有积分环节,具体有几个积分环节,视低频段斜率而定。若低频段斜率为-20u(db/dec),则有u个积分环节。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12188602.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存