inline bool Compare(bool greater,int p1,int p2) { if (greater) return p1>=p2; else return p1<=p2;}
我决定优化以避免分歧:
inline bool Compare2(bool greater,int p2) { bool ret[2] = {p1<=p2,p1>=p2}; return ret[greater];}
然后我通过这样做测试:
bool x = true;int M = 100000;int N = 100;bool a[N];int b[N];int c[N];for (int i=0;i<N; ++i) { a[i] = rand()%2; b[i] = rand()%128; c[i] = rand()%128;}// Timed the below loop with both Compare() and Compare2()for (int j=0; j<M; ++j) { for (int i=0; i<N; ++i) { x ^= Compare(a[i],b[i],c[i]); }}
结果:
Compare(): 3.14ns avgCompare2(): 1.61ns avg
我会说个案封闭,避免分支FTW.但为了完整,我换了
a[i] = rand()%2;
有:
a[i] = true;
并得到〜3.14ns的完全相同的测量.大概当时没有分支,编译器实际上是重写Compare()来避免if语句.但是,为什么Compare2()更快?
不幸的是,我是汇编代码文盲,否则我本来会尝试回答这个问题.
编辑:下面是一些程序集:
_Z7Comparebii:.LFB4: .cfi_startproc .cfi_personality 0x3,__gxx_personality_v0 pushq %rbp .cfi_def_cfa_offset 16 movq %rsp,%rbp .cfi_offset 6,-16 .cfi_def_cfa_register 6 movl %edi,%eax movl %esi,-8(%rbp) movl %edx,-12(%rbp) movb %al,-4(%rbp) cmpbclass StackOverflowFixture : public celero::TestFixture{ public: StackOverflowFixture() { } inline bool NoOp(bool greater,int p2) { return true; } inline bool Compare(bool greater,int p2) { if(greater == true) { return p1>=p2; } return p1<=p2; } inline bool Compare2(bool greater,int p2) { bool ret[2] = {p1<=p2,p1>=p2}; return ret[greater]; } inline bool Compare3(bool greater,int p2) { return (!greater != !(p1 <= p2)) | (p1 == p2); } inline bool Compare4(bool greater,int p2) { return (greater ^ (p1 <= p2)) | (p1 == p2); }};BASEliNE_F(StackOverflow,Baseline,StackOverflowFixture,100,5000000){ celero::DoNotoptimizeAway(NoOp(rand()%2,rand(),rand()));}BENCHMARK_F(StackOverflow,Compare,5000000){ celero::DoNotoptimizeAway(Compare(rand()%2,Compare2,5000000){ celero::DoNotoptimizeAway(Compare2(rand()%2,Compare3,5000000){ celero::DoNotoptimizeAway(Compare3(rand()%2,Compare4,5000000){ celero::DoNotoptimizeAway(Compare4(rand()%2,rand()));},-4(%rbp) je .L2 movl -8(%rbp),%eax cmpl -12(%rbp),%eax setge %al jmp .L3.L2: movl -8(%rbp),%eax setle %al.L3: leave ret .cfi_endproc.LFE4: .size _Z7Comparebii,.-_Z7Comparebii .section .text._Z8Compare2bii,"axG",@progbits,_Z8Compare2bii,comdat .weak _Z8Compare2bii .type _Z8Compare2bii,@function_Z8Compare2bii:.LFB5: .cfi_startproc .cfi_personality 0x3,-24(%rbp) movl %edx,-28(%rbp) movb %al,-20(%rbp) movw[==========][ CELERO ][==========][ STAGE ] Baselining[==========][ RUN ] StackOverflow.Baseline -- 100 samples,5000000 calls per run.[ DONE ] StackOverflow.Baseline (0.690499 sec) [5000000 calls in 690499 usec] [0.138100 us/call] [7241140.103027 calls/sec][==========][ STAGE ] Benchmarking[==========][ RUN ] StackOverflow.Compare -- 100 samples,5000000 calls per run.[ DONE ] StackOverflow.Compare (0.782818 sec) [5000000 calls in 782818 usec] [0.156564 us/call] [6387180.672902 calls/sec][ BASEliNE ] StackOverflow.Compare 1.133699[ RUN ] StackOverflow.Compare2 -- 100 samples,5000000 calls per run.[ DONE ] StackOverflow.Compare2 (0.700767 sec) [5000000 calls in 700767 usec] [0.140153 us/call] [7135039.178500 calls/sec][ BASEliNE ] StackOverflow.Compare2 1.014870[ RUN ] StackOverflow.Compare3 -- 100 samples,5000000 calls per run.[ DONE ] StackOverflow.Compare3 (0.709471 sec) [5000000 calls in 709471 usec] [0.141894 us/call] [7047504.408214 calls/sec][ BASEliNE ] StackOverflow.Compare3 1.027476[ RUN ] StackOverflow.Compare4 -- 100 samples,5000000 calls per run.[ DONE ] StackOverflow.Compare4 (0.712940 sec) [5000000 calls in 712940 usec] [0.142588 us/call] [7013212.893091 calls/sec][ BASEliNE ] StackOverflow.Compare4 1.032500[==========][ COMPLETE ][==========],-16(%rbp) movl -24(%rbp),%eax cmpl -28(%rbp),%eax setle %al movb %al,%eax setge %al movb %al,-15(%rbp) movzbl -20(%rbp),%eax cltq movzbl -16(%rbp,%rax),%eax leave ret .cfi_endproc.LFE5: .size _Z8Compare2bii,.-_Z8Compare2bii .text
现在,执行测试的实际代码可能是使用上述两个函数的内联版本,所以有可能这是错误的代码分析.就这样说,我在Compare()中看到一个jmp命令,所以我认为这意味着它是分支.如果是这样,我猜这个问题就变成了:为什么当我将一个[i]从rand()%2更改为true(或者对于该事情是false)时,为什么分支预测器不能提高Compare()的性能?
编辑2:我用“分支”代替“分支预测”,使我的帖子更加明智.
解决方法 我写了一个名为Celero的C库,旨在测试这样的优化和替代方案. (无耻自我推销: https://github.com/DigitalInBlue/Celero)我使用以下代码运行您的案例:
cmp r8d,r9dmovzx eax,dlsetle BYTE PTR ret$[rsp]cmp r8d,r9dsetge BYTE PTR ret$[rsp+1]movzx eax,BYTE PTR ret$[rsp+rax]
结果如下:
xor r11d,r11dcmp r8d,r9dmov r10d,r11dsetg r10btest dl,dlmov ecx,r11dsete clmov eax,r11dcmp ecx,r10dsetne alcmp r8d,r9dsete r11bor eax,r11d
考虑到这个测试,看起来Compare2是这个微型优化的最佳选择.
编辑:
Compare2装配(最好的情况):
比较3装配(最好的情况):
总结以上是内存溢出为你收集整理的微优化c比较功能全部内容,希望文章能够帮你解决微优化c比较功能所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)